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Consider a finite set of labels A = {A1,..., Ap}.

We want to rank them by a complete, transitive and asymmetric relation >.

Central question: How can we model beliefs about =7

> characterises a unique permutation 7 (called label ranking) of {1,...,n}:
)\7(1) ~ )\7(2) e )\7.(,,).
A popular belief model on the set £(A) of all label rankings is the
Plackett—Luce (PL) model
H Ze Kk Vr(

with positive strength vector v = (vq,...,vp). We assume Y 7_; vk = L.
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Plackett—Luce (PL) model

The Plackett-Luce (PL) model

n
with v = 1.
s ey
How can we find the best (most probable) ranking 77

7 maximises PV() = V(1) > Vi (2) > Vre(3) """ > Vr+(n—1) > Vo (n)-
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Imprecise Plackett—Luce (IPL) model

The Plackett—Luce (PL) model: P,(7) := [T}, S )
=
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Imprecise Plackett—Luce (IPL) model

The Plackett—Luce (PL) model: Py(7) :=[1f_1 TVTL
L=k

vr(e)

V2

vacuous belief model

v3

=] F = = DA
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Imprecise Plackett—Luce (IPL) model

The Plackett—Luce (PL) model: Py(7) :=[1f_1 S*VTL
l=k

Vr(e)|
V2
Imprecise Plackett—Luce model: let v vary

over a set ©.
lower and upper probability of 7:

Po(7) = Jgg P,(1); Peo(r):= igg P,(7).

<\

v3
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Problem: there is in general no unique best ranking.
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Decision-making with IPL

Given an IPL with set of strength vectors ©, how can we find the “best” or
“most probable” rankings?

Problem: there is in general no unique best ranking.

Let 71 > 7 when P,(m1) > Py(72) for all vin ©.  The set of undominated
rankings

Mo ={re€ LIN): (V7' € LIN)T # 7}
contains the (Walley—Sen) maximal rankings.

As another approach, the set

Eo = U {7 maximises P,(-)}
ved®

contains the E-admissible rankings.  We always have £g C M.
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Inferences with an IPL

We establish two theoretical results.
@ For arbitrary sets ©, we find an efficient algorithm to calculate an
outer approximation of the maximal rankings Mg.
@ For a specific type of ©—namely, when it is generated by intervals—we
find two exact algorithms:
@ an efficient algorithm to determine whether a given ranking is

E-admissible;
@ another algorithm to calculate all the E-admissible rankings &o.
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Application to label ranking

Problem example

Individual | Preferred object Less preferred object Disliked object
John Cheese Meat Parrot

Michael Parrot Cheese Meat
Terry Meat Cheese Parrot

New individual Graham :

Table: Rankings of objects

Individual | Temperament Self-esteem

John Nervous Too much

Michael Calm Too much
Terry Nervous Perhaps

Table: Characteristics of individuals

Parrot = Meat > Cheese.
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Application to label ranking

Preference learning and motivation for a robust approach

@ Mapping between an instance x € X’ and a order of labels
A ={)A1,...,\p} called ranking. Rankings can be incomplete.

@ The probability of each L£(A) is here modelled by a Plackett—Luce
model. 7" is the permutation with the highest probability.

@ In some contexts, a robust prediction is needed: if the preference of an
object over another is too small, a small perturbation could swap the
order. Abstention of preference is therefore useful.

@ A robust method to estimate 7" already exists in the literature (Cheng,
2012). Our motivation is to add it the imprecise probabilities framework.
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Precise case

@ Local learning: prediction based on the nearest neighbours (Cheng, 2010).
The probability to observe a ranking is then:

P(7i,...,7k|v) = H H (1)

i=1m=1 Jmﬂ(J)

v* is found with the maximum likelihood estimation (MLE).

@ Obtaining the maximum can be done with different optimisation
algorithms. One of them is the minorization-maximization algorithm
(Hunter, 2004), a generalisation of the EM algorithm, that provably
converges to the maximum.

@ 7" can be found be simply ordering the labels according to v*.
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Imprecise case

@ An IPL model is in correspondence one-to-one with an imprecise
parameter estimate, found by extending of the classical likelihood with
the contour likelihood function (Edwards, 1992).

L
maxyey L(v)
L* takes values in |0, 1]: the closer L*(v) is to 1, the more likely v is.
@ "Cuts" can be done to find imprecise estimates. Given 3 in [0, 1], the
[-cut of the contour likelihood, written BZ;, is defined by

By ={veX:L'(v)=>p}.
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Example of contour likelihood usage

@ Impossible to model the whole
function: generation of strengths v
with Dirichlet distributions.

@ Threshold of 0.9 (yellow): all points
indicate A1 > A2 > A3. This is the

02 predicted ordering.
et @ Threshold of 0.5 (light-blue): some
points indicate that A» = A\; and
Figure: Contour likelihood A3 = Ao. Only A1 = A3 is predicted.
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Experimental method

o CR(m, 1) = C+D D the correctness and CP(rm,#) = ﬁ the

completeness of predictions (Cheng, 2010). C concording pairs, D
discording pairs. Metrics between 0 and 1.

o Tested on different data sets (Cheng, 2010). Examples: Bodyfat with
m = 252 instances and n = 7 labels, Housing with m = 506, n = 6 and
Wisconsin with m = 194, n = 16.

@ Number of neighbours by cross validation. 200 strengths generated by
two Dirichlet distributions: a; = v, ap = 10v. Cross validation for the
results: 10 folds and repeated 3 times.

@ Tested with different perturbations: missing elements in the rankings
and swapped labels.
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General results

Bodyfat

@ Both methods seem to achieve
similar results.

Correctness

@ Specific cases have to be
o Lielood appresch identified: possible evolution

N when the amount of data for
learning varies.

Figure: Full comparison of methods on
Bodyfat with no missing labels
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Results with missing data

Carrectness

Housin,
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Figure: Comparison of methods on

Housing with no missing labels
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Figure: Comparison of methods on
Housing with 60% of missing labels
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Results with swapped labels

Wisconsin Wisconsin
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Figure: Comparison of methods on Figure: Comparison of methods on
Wisconsin with no swapped labels Wisconsin with 60% of swapped labels
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Conclusions

We have introduced the Imprecise Plackett—Luce model (IPL).

We established algorithms to find (an outer approximation) of the maximal
rankings and the E-admissible rankings of an IPL.

We have studied methods to learning an IPL and performed experiments
about our techniques.
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Thank you for your attention!

Loic Adam, Arthur Van Camp, Sébastien Destercke & Benjamin Quost
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