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Label ranking

Label ranking

Consider a finite set of labels Λ = {λ1, . . . , λn}.

We want to rank them by a complete, transitive and asymmetric relation �.

Central question: How can we model beliefs about �?

� characterises a unique permutation τ (called label ranking) of {1, . . . , n}:

λτ(1) � λτ(2) � · · · � λτ(n).

A popular belief model on the set L(Λ) of all label rankings is the
Plackett–Luce (PL) model

Pv(τ) :=
n∏

k=1

vτ(k)∑n
`=k vτ(`)

with positive strength vector v = (v1, . . . , vn). We assume
∑n

k=1 vk = 1.
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Label ranking

Plackett–Luce (PL) model

The Plackett–Luce (PL) model

Pv(τ) :=
n∏

k=1

vτ(k)∑n
`=k vτ(`)

with
n∑

k=1
vk = 1.

How can we find the best (most probable) ranking τ??

τ? maximises Pv(·)⇔ vτ∗(1) ≥ vτ∗(2) ≥ vτ∗(3) · · · ≥ vτ∗(n−1) ≥ vτ∗(n).
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Label ranking

Imprecise Plackett–Luce (IPL) model

The Plackett–Luce (PL) model: Pv(τ) :=
∏n

k=1
vτ(k)∑n
`=k vτ(`)

.

v1

v2

v3

u

Imprecise Plackett–Luce model: let v vary
over a set Θ.
lower and upper probability of τ:

PΘ(τ) := inf
v∈Θ

Pv(τ); PΘ(τ) := sup
v∈Θ

Pv(τ).
Θ

v2 ≤ 1
2v2 ≤ v3vacuous belief model
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Label ranking

Decision-making with IPL

Given an IPL with set of strength vectors Θ, how can we find the “best” or
“most probable” rankings?

Problem: there is in general no unique best ranking.

Let τ1 � τ2 when Pv(τ1) > Pv(τ2) for all v in Θ. The set of undominated
rankings

MΘ = {τ ∈ L(Λ) : (∀τ ′ ∈ L(Λ))τ ′ 6� τ}

contains the (Walley–Sen) maximal rankings.

As another approach, the set

EΘ =
⋃

v∈Θ
{τ maximises Pv (·)}

contains the E-admissible rankings. We always have EΘ ⊆MΘ.
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Label ranking

Inferences with an IPL

We establish two theoretical results.

1 For arbitrary sets Θ, we find an efficient algorithm to calculate an
outer approximation of the maximal rankingsMΘ.

2 For a specific type of Θ—namely, when it is generated by intervals—we
find two exact algorithms:

1 an efficient algorithm to determine whether a given ranking is
E-admissible;

2 another algorithm to calculate all the E-admissible rankings EΘ.
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Application to label ranking

Problem example
Individual Preferred object Less preferred object Disliked object
John Cheese Meat Parrot

Michael Parrot Cheese Meat
Terry Meat Cheese Parrot

Table: Rankings of objects

Individual Temperament Self-esteem
John Nervous Too much

Michael Calm Too much
Terry Nervous Perhaps

Table: Characteristics of individuals

New individual Graham : calm and not too much self-esteem ⇒
Parrot � Meat � Cheese.
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Application to label ranking

Preference learning and motivation for a robust approach

Mapping between an instance x ∈ X and a order of labels
Λ = {λ1, . . . , λn} called ranking. Rankings can be incomplete.

The probability of each L(Λ) is here modelled by a Plackett–Luce
model. τ∗ is the permutation with the highest probability.

In some contexts, a robust prediction is needed: if the preference of an
object over another is too small, a small perturbation could swap the
order. Abstention of preference is therefore useful.

A robust method to estimate τ∗ already exists in the literature (Cheng,
2012). Our motivation is to add it the imprecise probabilities framework.
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Application to label ranking

Precise case

Local learning: prediction based on the nearest neighbours (Cheng, 2010).
The probability to observe a ranking is then:

P(τ1, . . . , τK |v) =
K∏

i=1

Mi∏
m=1

vτi (m)∑Mi
j=m vτi (j)

. (1)

v∗ is found with the maximum likelihood estimation (MLE).

Obtaining the maximum can be done with different optimisation
algorithms. One of them is the minorization-maximization algorithm
(Hunter, 2004), a generalisation of the EM algorithm, that provably
converges to the maximum.

τ∗ can be found be simply ordering the labels according to v∗.
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Application to label ranking

Imprecise case

An IPL model is in correspondence one-to-one with an imprecise
parameter estimate, found by extending of the classical likelihood with
the contour likelihood function (Edwards, 1992).

L∗(v) = L(v)
maxv∈Σ L(v) ;

L∗ takes values in ]0, 1]: the closer L∗(v) is to 1, the more likely v is.

"Cuts" can be done to find imprecise estimates. Given β in [0, 1], the
β-cut of the contour likelihood, written B∗β, is defined by

B∗β = {v ∈ Σ : L∗(v) ≥ β} .
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Application to label ranking

Example of contour likelihood usage

Figure: Contour likelihood

Impossible to model the whole
function: generation of strengths v
with Dirichlet distributions.

Threshold of 0.9 (yellow): all points
indicate λ1 � λ2 � λ3. This is the
predicted ordering.

Threshold of 0.5 (light-blue): some
points indicate that λ2 � λ1 and
λ3 � λ2. Only λ1 � λ3 is predicted.
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Application to label ranking

Experimental method

CR(π, π̂) = C−D
C+D the correctness and CP(π, π̂) = C+D

n(n−1)/2 the
completeness of predictions (Cheng, 2010). C concording pairs, D
discording pairs. Metrics between 0 and 1.

Tested on different data sets (Cheng, 2010). Examples: Bodyfat with
m = 252 instances and n = 7 labels, Housing with m = 506, n = 6 and
Wisconsin with m = 194, n = 16.

Number of neighbours by cross validation. 200 strengths generated by
two Dirichlet distributions: α1 = ν, α2 = 10ν. Cross validation for the
results: 10 folds and repeated 3 times.

Tested with different perturbations: missing elements in the rankings
and swapped labels.
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Application to label ranking

General results

Figure: Full comparison of methods on
Bodyfat with no missing labels

Both methods seem to achieve
similar results.

Specific cases have to be
identified: possible evolution
when the amount of data for
learning varies.
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Application to label ranking

Results with missing data

Figure: Comparison of methods on
Housing with no missing labels

Figure: Comparison of methods on
Housing with 60% of missing labels
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Application to label ranking

Results with swapped labels

Figure: Comparison of methods on
Wisconsin with no swapped labels

Figure: Comparison of methods on
Wisconsin with 60% of swapped labels
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Application to label ranking

Conclusions

We have introduced the Imprecise Plackett–Luce model (IPL).

We established algorithms to find (an outer approximation) of the maximal
rankings and the E-admissible rankings of an IPL.

We have studied methods to learning an IPL and performed experiments
about our techniques.
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Application to label ranking

Thank you for your attention!

Loïc Adam, Arthur Van Camp, Sébastien Destercke & Benjamin Quost
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