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Basic idea of imprecise probabilities: decisions and choice.
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The simplest way out: binary choice

Which gambles are strictly preferred to 07
We collect them in the agent’s set of desirable gambles.

How does that work?
fi-hesfi-h-0sf—-fheD

forall f; and £ in .Z.

To summarise:
D={feZ:f>0}.



The simplest way out: binary choice

D={feZ:f>0}

Sets of desirable gambles are more general than lower previsions or
sets of probabilities.

Working with them is simple and elegant.

They form a strong belief structure: they generalise conservative
logical inference (natural extension).
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More general choice

A: option set of gambles (non-empty but finite)
C(A): chosen or admissible options

R(A): rejected options (R(A) = A\ C(A))

2: set of all the non-empty but finite subsets of .~

A choice function Cis a map

C: 2 2U{0}: A— C(A) such that C(A) C A.



Axioms for “coherence”

We call a choice function C on 2 coherent if for all A, Ay, As in 2,
f,gin Zand A inR_p:

C1 C(A) #0; [non-emptiness]

C2 if f<gthen {g} = C({f.9}); [non-triviality]
C3a if AC R(Ay) and Ay C A then A C R(Az); [Sen’s condition «]
C3b if Ay C R(A2) and A C Ay

then A{\AC R(A>\ A); [Aizerman’s condition]
Cda if Ay C C(A2) then LA; C C(LA2); [scaling]
C4b if Ay C C(Az) then Ay +{f} C C(Ax>+{f}). [addition]

Coherent choice functions do not form a strong belief structure.



Convexity

We need something stronger: is a convexity axiom sufficient?
Forall Aand Ay in 2:

C5 if AC Ay CCH(A) then C(A) C C(A1). [convexity]



Purely binary choice with choice functions

Forall Ain 2
Cp(A)={feA:(Vge A)g—f¢ D} “the undominated gambles in A”

But: not every choice function is binary.
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Connection between desirability and choice
functions

From Dto C: Cp(A) ={fecA:(Vge A)g—Tf¢ D} forall Ain 2

From Cto D: Dg={fe 2 :0ec R({0.f})}

Coherence is preserved.
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Desirability and convexity

If D is coherent, then Cp is coherent.

What about C5?
C5 if AC Ay C CH(A) then C(A) C C(A). [convexity]

If D is coherent, then Cp is coherent, but it may not satisfy C5.
For which D’s is Cp convex?

Cp is coherent + C5 < D is coherent and posi(D°) = D°.

Interestingly, posi(D¢) = D¢ is a characterisation of lexicographic
probability!

We collect such D’s in % = {D coherent : posi(D°) = D°}, and call
%L = {Cp : D € 2} the lexicographic choice functions.



Is every coherent and convex choice function
an infimum of lexicographic choice functions?



Rejection sets: choice amongst three

Inspired by desirability, can we represent choice functions
graphically?



Rejection sets: choice amongst three

Inspired by desirability, can we represent choice functions
graphically?

When |.27| = 2, choice functions are determined by choice amongst
three options.

fi € R({f1,f2,f3}) <0e R({O,fg —fi, 3 — f1})

forall f;, i, and f3 in .Z.



Rejection sets: choice amongst three

Inspired by desirability, can we represent choice functions
graphically?

When |.27| = 2, choice functions are determined by choice amongst
three options.

fi € R({f1,f2,f3}) <0e R({O,fg —fi, 3 — f1})
forall f;, i, and f3 in .Z.

The question becomes: “Is 0 € R({0.f,g})?”
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From coherence axioms to graphical properties

Properties:

- (0,0) ¢ K;

- if (k{,ko) € K and ky < /4 and ko < (5, then
(b1,0) e K [K is increasing];

- C satisfies C5 < {(/1,/5) € [0,1)%: (4 +
lo>1} CK;

- below the diagonal, the border of K has
only horizontal or vertical lines.




What do (infima of) lexicographic choice functions
look like?

Infimum for rejection sets is intersection.
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Conclusion

Coherence and C5 is not sufficient to guarantee that C is an
infimum of lexicographic choice functions.






