
Robustifying the Viterbi Algorithm

Cedric De Boom, Jasper De Bock, Arthur Van Camp, and Gert de Cooman

SYSTeMS Research Group, Ghent University,
Technologiepark 914, 9052 Zwijnaarde, Belgium

{Cedric.DeBoom,Jasper.DeBock,Arthur.VanCamp,Gert.deCooman}@UGent.be

Abstract. We present an efficient algorithm for estimating hidden state
sequences in imprecise hidden Markov models (iHMMs), based on ob-
served output sequences. The main difference with classical HMMs is
that the local models of an iHMM are not represented by a single mass
function, but rather by a set of mass functions. We consider as esti-
mates for the hidden state sequence those sequences that are maximal.
In this way, we generalise the problem of finding a state sequence with
highest posterior probability, as is commonly considered in HMMs, and
solved efficiently by the Viterbi algorithm. An important feature of our
approach is that there may be multiple maximal state sequences, typi-
cally for iHMMs that are highly imprecise. We show experimentally that
the time complexity of our algorithm tends to be linear in this number
of maximal sequences, and investigate how this number depends on the
local models.

Keywords: imprecise hidden Markov model, Viterbi algorithm, maxi-
mality, hidden state sequence, robustness

1 Introduction

The popularity of Bayesian networks has increased rapidly over the last decades,
and their power has been illustrated in numerous applications. Nevertheless,
some of the assumptions they are based on are rather severe and, in some cases,
even unreasonable. For example, in order to specify a Bayesian network, one has
to quantify its local probability mass functions exactly. If limited data and/or
expert knowledge is available, this is clearly an unrealistic requirement. By en-
forcing precision nevertheless, the resulting model and the inferences it produces
are, although precise, not guaranteed to be supported by the evidence, thereby
creating a false sense of correctness.

In order to avoid this problem, one can allow for local models that are rep-
resented by a set of mass functions instead of a single one, thereby obtaining a
so-called credal network [1]. In this paper, we will consider the special case of an
imprecise hidden Markov model (iHMM), which is the credal network version of
an HMM. We explain how the problem of finding a state sequence with maximal
posterior probability can be generalised to this framework, and present an algo-
rithm that is capable of solving this new version of the problem in an efficient
manner. In this way, we obtain a robust alternative to the Viterbi algorithm [5].

A similar study has been conducted in Ref. [2] as well. However, the iHMM
that was considered in that paper was of a completely different kind: instead of
regarding an iHMM as a collection of HMMs—as we will do, and as is technically
referred to as assuming ‘strong independence’—the authors of Ref. [2] considered
a so-called iHMM under epistemic irrelevance; see Ref. [1] for more information.
In the conclusions of Ref. [2], the authors wondered whether or not it was possible
to obtain similar results for our version of an iHMM. The present paper illustrates
that this is indeed the case.

We start in Section 2 by introducing HMMs, also discussing the problem
that is solved by the Viterbi algorithm. In Section 3, we generalise this problem
towards imprecise hidden Markov models, which we introduce, and explain how
it leads us to consider a set of maximal sequences as estimates for the hidden
state sequence. We derive a manageable expression for this set in Section 4, and
use it in Section 5 to derive an algorithm that is able to calculate the set of
all maximal sequences in a recursive manner. In Section 6, we explain how for
some common imprecise models, the parameters that are required to run our
algorithm can be calculated easily. We end the paper in Section 7 by presenting
a number of experiments, showing that the time complexity of our algorithm
tends to be linear in the number of maximal sequences, and illustrating how this
number depends on the local models of the iHMM.

2 Hidden Markov Models

A hidden Markov model (HMM) is a probabilistic graphical model that has a
graphical structure of the form depicted in Figure 1.

𝑋1 𝑋2
. . . 𝑋𝑘

. . . 𝑋𝑛

𝑂1 𝑂2 𝑂𝑘 𝑂𝑛

Fig. 1. Graphical structure of a hidden Markov model.

It consists of 2𝑛 random variables that can be categorised into 𝑛 hidden state
variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 and 𝑛 observable output variables 𝑂1, 𝑂2, . . . , 𝑂𝑛. For
any given 𝑘 in {1, . . . , 𝑛}, the variables 𝑋𝑘 and 𝑂𝑘 take values in their respective
possibility space 𝒳𝑘 and 𝒪𝑘. We assume that every possibility space is finite.

2.1 Local Uncertainty Models

For the first state variable 𝑋1, we have an initial model that, since 𝒳1 is assumed
to be finite, can be characterised by a probability mass function 𝑝1 on 𝒳1. For any
𝑥1 in 𝒳1, 𝑝1(𝑥1) is the probability that 𝑋1 takes the value 𝑥1. For the subsequent
state variables 𝑋𝑘, with 𝑘 in {2, . . . , 𝑛}, we have a transition model 𝑝𝑘. For any

𝑥𝑘 in 𝒳𝑘 and 𝑥𝑘−1 in 𝒳𝑘−1, 𝑝𝑘(𝑥𝑘|𝑥𝑘−1) is the probability that 𝑋𝑘 assumes the
value 𝑥𝑘, conditional on 𝑋𝑘−1 being equal to 𝑥𝑘−1. For notational convenience,
we introduce a trivial state variable 𝑋0 that assumes only a single value ⊓⊔;
hence, 𝒳0 := {⊓⊔} and, whenever we write 𝑥0, this is taken to be equal to ⊓⊔.
This trick allows us to regard 𝑝1 as a conditional model as well, by defining
𝑝1(𝑥1|⊓⊔) := 𝑝1(𝑥1). Finally, for every output variable 𝑂𝑘, with 𝑘 in {1, . . . , 𝑛},
we have an emission model 𝑞𝑘. For every 𝑜𝑘 in 𝒪𝑘 and 𝑥𝑘 in 𝒳𝑘, it provides us
with the conditional probability 𝑞𝑘(𝑜𝑘|𝑥𝑘) that 𝑂𝑘 assumes the value 𝑜𝑘, given
that 𝑋𝑘 is equal to 𝑥𝑘.

2.2 Constructing a Joint Model

By imposing the usual Markov condition for Bayesian networks, the global model
of an HMM—a global mass function 𝑝—is completely determined by its local
models; it suffices to multiply them. For all 𝑥1:𝑛 in 𝒳1:𝑛 :=×𝑛

𝑘=1
𝒳𝑘 and 𝑜1:𝑛 in

𝒪1:𝑛 :=×𝑛

𝑘=1
𝒪𝑘, we find that

𝑝(𝑥1:𝑛, 𝑜1:𝑛) =

𝑛∏︁
𝑘=1

𝑝𝑘(𝑥𝑘|𝑥𝑘−1)𝑞𝑘(𝑜𝑘|𝑥𝑘),

where we use the shorthand notations 𝑥1:𝑛 := (𝑥1, . . . , 𝑥𝑛) and 𝑜1:𝑛 := (𝑜1, . . . , 𝑜𝑛)
to refer to the state and output sequence, respectively.

2.3 The Viterbi Algorithm

One of the most important problems in an HMM is to try and estimate the
unknown hidden state sequence, based on an observed output sequence 𝑜1:𝑛 in
𝒪1:𝑛. This is commonly done by choosing a state sequence 𝑥1:𝑛 that maximises
the posterior probability 𝑝(𝑥1:𝑛|𝑜1:𝑛), as obtained through Bayes’ rule. We will
call such a state sequence optimal. Assuming that 𝑝(𝑜1:𝑛) is positive, we find
that the set of all optimal sequences is equal to

arg max
𝑥1:𝑛∈𝒳1:𝑛

𝑝(𝑥1:𝑛, 𝑜1:𝑛) = arg max
𝑥1:𝑛∈𝒳1:𝑛

𝑛∏︁
𝑘=1

𝑝𝑘(𝑥𝑘|𝑥𝑘−1)𝑞𝑘(𝑜𝑘|𝑥𝑘). (1)

A well-known method for finding an arbitrary element of this set—and hence an
estimate for 𝑥1:𝑛—is to apply the Viterbi algorithm [5]; see Ref. [3] for a good
introduction. By proceeding in a recursive fashion, this algorithm manages to
be very efficient: its time complexity is only O

(︀
𝑛𝑚2

)︀
, where 𝑚 is the size of the

biggest possibility space for the states: 𝑚 := max{|𝒳𝑘| : 𝑘 ∈ {1, . . . , 𝑛}}.

3 Imprecise Hidden Markov Models

In classical HMMs—the ones considered in the previous section—the local un-
certainty models are mass functions, which have to be quantified exactly, say,
with arbitrary precision. However, in many instances (e.g., if little data and/or

expert knowledge is available), this requirement is clearly unreasonable. For ex-
ample, what if there is some probability for which an expert is only able to
provide an interval, rather than an exact value? In order to model such situa-
tions in a more flexible manner, one can use a so-called imprecise hidden Markov
model (iHMM) which, basically, is just a set of HMMs. They all share the same
graphical structure, but their local probability mass functions may differ.

3.1 Local Imprecise Uncertainty Models

The crucial difference between iHMMs and HMMs is that their local models are
not required to consist of a single mass function. Instead, a set of mass functions
may be used. The only restrictions we impose is that this set should be compact,
and that it should assign positive probability to every event; for ease of reference,
we call this last requirement the positivity assumption.

In order to make this more formal, we denote by Σ𝒳 the set of all mass
functions on some generic possibility space 𝒳 and let intΣ𝒳 be its interior, as
defined by intΣ𝒳 := {𝑝 ∈ Σ𝒳 : (∀𝑥 ∈ 𝒳) 𝑝(𝑥) > 0}. We allow our local models
to be any compact subset ℳ of intΣ𝒳 . Compactness is imposed to ensure that
minima and maxima are well-defined, thereby allowing us to consider, for all 𝑥
in 𝒳 , its so-called lower and upper probability, as defined by

𝑝(𝑥) := min{𝑝(𝑥) : 𝑝 ∈ℳ} and 𝑝(𝑥) := max{𝑝(𝑥) : 𝑝 ∈ℳ}.

The positivity assumption is imposed for didactical reasons only, as it allows us
to avoid a number of cumbersome technicalities. In its most general form—which,
due to page limit constraints, we are unable to discuss here—the algorithm we
are about to introduce works for compact subsets of Σ𝒳 as well.

We introduce the following notation for the different local uncertainty mod-
els of an iHMM. For 𝑋1, the initial model is denoted by ℳ1 and can be any
compact subset of intΣ𝒳1

. Similarly, the transition model at position 𝑘, condi-
tional on 𝑋𝑘−1 = 𝑥𝑘−1, is a compact subset ℳ𝑋𝑘|𝑥𝑘−1

of intΣ𝒳𝑘
. This set may

be different for every 𝑥𝑘−1 in 𝒳𝑘−1. It will be convenient to refer to them collec-
tively by means of the shorthand notationℳ𝑋𝑘|𝑋𝑘−1

:=×𝑥𝑘−1∈𝒳𝑘−1
ℳ𝑋𝑘|𝑥𝑘−1

.

An element 𝑝𝑘(·|𝑋𝑘−1) of ℳ𝑋𝑘|𝑋𝑘−1
is then a tuple, consisting of probability

mass functions 𝑝𝑘(·|𝑥𝑘−1) in ℳ𝑋𝑘|𝑥𝑘−1
, one for every 𝑥𝑘−1 in 𝒳𝑘−1. For 𝑘 = 1,

we have that ℳ𝑋1|𝑋0
= ℳ𝑋𝑘|⊓⊔ := ℳ1. Finally, the emission model at posi-

tion 𝑘, conditional on 𝑋𝑘 = 𝑥𝑘, is a compact subsetℳ𝑂𝑘|𝑥𝑘
of intΣ𝒪𝑘

. We write
ℳ𝑂𝑘|𝑋𝑘

:=×𝑥𝑘∈𝒳𝑘
ℳ𝑂𝑘|𝑥𝑘

to refer to all the different conditional models for
𝑂𝑘 at once.

3.2 Constructing an Imprecise Joint Model

By specifying these imprecise, set-valued local models, we also specify, in a very
natural way, a corresponding family of joint probability mass functions

ℳ :=
{︁ 𝑛∏︁

𝑘=1

𝑝𝑘(𝑋𝑘|𝑋𝑘−1)𝑞𝑘(𝑂𝑘|𝑋𝑘) : (2)

(∀𝑘 ∈ {1, . . . , 𝑛}) 𝑝𝑘(·|𝑋𝑘−1) ∈ℳ𝑋𝑘|𝑋𝑘−1
, 𝑞𝑘(·|𝑋𝑘) ∈ℳ𝑂𝑘|𝑋𝑘

}︁
.

Every probability mass function 𝑝 inℳ corresponds to a different HMM, whose
local probability mass functions are selected from the imprecise, set-valued local
models that were discussed in the previous section. Together, these HMMs—and
their joint mass functions—constitute an iHMM. Note that, since multiplication
is a continuous operation, the compactness of the local imprecise models guar-
antees that ℳ is compact as well. Furthermore, since the local models satisfy
the positivity assumption, ℳ satisfies it too.

3.3 Generalising the Notion of Optimality

Since we are now working with a set ℳ of joint mass functions rather than a
single mass function 𝑝, the concept of ‘maximising posterior probability’ is no
longer well-defined. Hence, we need to come up with some other way of estimating
the hidden sequence 𝑥1:𝑛 based on an observed output sequence 𝑜1:𝑛; we need a
new notion of optimality. Different imprecise-probabilistic decision criteria can
be used for this purpose; see Ref. [4] for an overview. In the precise case—if
ℳ is a singleton—all these approaches coincide with the one that is adopted in
Section 2.3.

The approach that we will use here is to adopt the decision criterion of
maximality [6]. The idea is to introduce a strict preference relation ≻ between
state sequences. For any two state sequences 𝑥1:𝑛 and �̂�1:𝑛 in 𝒳1:𝑛, we say that
𝑥1:𝑛 is better than �̂�1:𝑛, and write 𝑥1:𝑛 ≻ �̂�1:𝑛, if

(∀𝑝 ∈ℳ) 𝑝(𝑥1:𝑛|𝑜1:𝑛) > 𝑝(�̂�1:𝑛|𝑜1:𝑛), (3)

This preference relation induces a strict partial order on the set of all state
sequences 𝒳1:𝑛, and we call a sequence �̂�1:𝑛 maximal if it is undominated in this
partial order or, equivalently, if no other sequence is better. This leads us to
consider as optimal sequences the elements of

optmax(𝒳1:𝑛|𝑜1:𝑛) :=
{︀
�̂�1:𝑛 ∈ 𝒳1:𝑛 : (∀𝑥1:𝑛 ∈ 𝒳1:𝑛) 𝑥1:𝑛 � �̂�1:𝑛

}︀
. (4)

4 A More Convenient Characterisation of Maximality

In its current form, our characterisation of maximality is—although intuitive—
rather impractical. Therefore, as a first step in developing an efficient algorithm
for calculating the maximal sequences, we set out to derive a more convenient
expression for optmax(𝒳1:𝑛|𝑜1:𝑛).

4.1 Defining the Local Parameters

We start by introducing a number of important local parameters. As we will see,
they are crucial to the developments in the remainder of this paper. For all 𝑘 in
{1, . . . , 𝑛}, 𝑜𝑘 in 𝒪𝑘, 𝑥𝑘 and �̂�𝑘 in 𝒳𝑘, and 𝑥𝑘−1 and �̂�𝑘−1 in 𝒳𝑘−1, we define

𝜔𝑘(𝑥𝑘, �̂�𝑘, 𝑜𝑘) := min
𝑞𝑘(·|𝑋𝑘)∈ℳ𝑂𝑘|𝑋𝑘

𝑞𝑘(𝑜𝑘|𝑥𝑘)

𝑞𝑘(𝑜𝑘|�̂�𝑘)
and

𝜒𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�𝑘, �̂�𝑘−1) := min
𝑝𝑘(·|𝑋𝑘−1)∈ℳ𝑋𝑘|𝑋𝑘−1

𝑝𝑘(𝑥𝑘|𝑥𝑘−1)

𝑝𝑘(�̂�𝑘|�̂�𝑘−1)
. (5)

The following result establishes that, for most values of 𝑥𝑘, �̂�𝑘, 𝑥𝑘−1 and
�̂�𝑘−1, these parameters can be calculated easily.

Proposition 1. The parameters 𝜔𝑘(𝑥𝑘, �̂�𝑘, 𝑜𝑘) and 𝜒𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�𝑘, �̂�𝑘−1) can
be calculated easily in most instances:

𝜔𝑘(𝑥𝑘, �̂�𝑘, 𝑜𝑘) =

{︃
1 if 𝑥𝑘 = �̂�𝑘,
𝑞
𝑘
(𝑜𝑘|𝑥𝑘)

𝑞𝑘(𝑜𝑘|�̂�𝑘)
if 𝑥𝑘 ̸= �̂�𝑘,

𝜒𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�𝑘, �̂�𝑘−1) =

{︃
1 if 𝑥𝑘 = �̂�𝑘 and 𝑥𝑘−1 = �̂�𝑘−1,
𝑝
𝑘
(𝑥𝑘|𝑥𝑘−1)

𝑝𝑘(𝑥𝑘|�̂�𝑘−1)
if 𝑥𝑘−1 ̸= �̂�𝑘−1.

The only exception—which is the case that is not covered by Proposition 1—
is 𝜒𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�𝑘, �̂�𝑘−1), with 𝑥𝑘 ̸= �̂�𝑘 and 𝑥𝑘−1 = �̂�𝑘−1. In general, this param-
eter will have to be calculated by performing the actual minimisation in Eq. (5),
for example, by fractional linear programming techniques. However, for many
commonly used local models, closed-form expressions are available even in this
case; we will come back to this in Section 6.

4.2 Rewriting the Solution Set

As we are about to show, the local parameters that were just introduced allow
us to greatly simplify Eq. (4). As a first step, we rewrite Eq. (3) in the following
manner:

𝑥1:𝑛 ≻ �̂�1:𝑛 ⇔ (∀𝑝 ∈ℳ) 𝑝(𝑥1:𝑛, 𝑜1:𝑛) > 𝑝(�̂�1:𝑛, 𝑜1:𝑛)

⇔ (∀𝑝 ∈ℳ)
𝑝(𝑥1:𝑛, 𝑜1:𝑛)

𝑝(�̂�1:𝑛, 𝑜1:𝑛)
> 1⇔ min

𝑝∈ℳ

𝑝(𝑥1:𝑛, 𝑜1:𝑛)

𝑝(�̂�1:𝑛, 𝑜1:𝑛)
> 1, (6)

where the equivalences are a consequence of Bayes’ rule, our positivity assump-
tion, and the compactness of ℳ.

The nice thing about Eq. (6) is that the minimum at the right hand side
can be easily calculated. Indeed, by exploiting the factorised form of the mass
functions 𝑝 in ℳ, splitting up the global minimum, and pushing the resulting
individual minima inside, we find that

min
𝑝∈ℳ

𝑝(𝑥1:𝑛, 𝑜1:𝑛)

𝑝(�̂�1:𝑛, 𝑜1:𝑛)
= min

𝑝∈ℳ

𝑛∏︁
𝑘=1

𝑝𝑘(𝑥𝑘|𝑥𝑘−1)

𝑝𝑘(�̂�𝑘|�̂�𝑘−1)

𝑞𝑘(𝑜𝑘|𝑥𝑘)

𝑞𝑘(𝑜𝑘|�̂�𝑘)

=

𝑛∏︁
𝑘=1

min
𝑝𝑘(·|𝑋𝑘−1)∈ℳ𝑋𝑘|𝑋𝑘−1

𝑝𝑘(𝑥𝑘|𝑥𝑘−1)

𝑝𝑘(�̂�𝑘|�̂�𝑘−1)
min

𝑞𝑘(·|𝑋𝑘)∈ℳ𝑂𝑘|𝑋𝑘

𝑞𝑘(𝑜𝑘|𝑥𝑘)

𝑞𝑘(𝑜𝑘|�̂�𝑘)

=

𝑛∏︁
𝑘=1

𝜒𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�𝑘, �̂�𝑘−1)𝜔𝑘(𝑥𝑘, �̂�𝑘, 𝑜𝑘). (7)

It is now but a small step to reformulate Eq. (4). By combining Eqs. (6) and (7),
we easily find that

�̂�1:𝑛 ∈ optmax(𝒳1:𝑛|𝑜1:𝑛)⇔ max
𝑥1:𝑛∈𝒳1:𝑛

𝑛∏︁
𝑘=1

𝜒𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�𝑘, �̂�𝑘−1)𝜔𝑘(𝑥𝑘, �̂�𝑘, 𝑜𝑘) ≤ 1,

(8)
where the maximum is trivially attained because 𝒳1:𝑛 is a finite set.

For a given, fixed state sequence �̂�1:𝑛 in 𝒳1:𝑛, calculating the maximum in
Eq. (8) is a problem that is—formally—very closely related the one that is
tackled by the Viterbi algorithm; compare Eqs. (1) and (8). Hence, it should not
come as a surprise that, by Eq. (8), checking whether �̂�1:𝑛 is maximal can be
done in an equally efficient way: O

(︀
𝑛𝑚2

)︀
. It suffices to calculate the maximum

in Eq. (8) in a recursive fashion.

5 A Recursive Algorithm

Although Eq. (8) already simplifies the problem of finding optmax(𝒳1:𝑛|𝑜1:𝑛),
applying it directly is clearly not efficient enough. The main bottleneck is that it
requires us to check the maximality of each individual state sequence separately.
Since there are exponentially many such state sequences, this quickly becomes
intractable. In order to avoid this exponential blow-up, we will now develop an
algorithm that is able to rule out the maximality of many state sequences at once,
without having to explicitly check the maximality of each of them individually.

5.1 Ruling out Multiple Sequences at Once

The central idea of our algorithm is to regard the set of all state sequences 𝒳1:𝑛

as a search tree in which we can navigate while deciding whether a branch is
useful or not to explore further. If we are able to infer that there is no maximal
state sequence that starts with a given initial segment, then we can completely
ignore all branches that start with this segment.

2

03

07

𝑋4

𝑋3

𝑋2

𝑋1

13

03

03 17

13

07 13

13

03

03

03 17

17

13

03

07 17

13

07 17

Fig. 2. Example of a search tree for binary sequences of length four.

Example 1. Consider the tree in Figure 2, which corresponds to 𝒳1:4, with binary
local state spaces 𝒳𝑘 := {0, 1}. In the leftmost part of the tree, the initial segment
‘00’ is investigated. If we are able to infer that there is no maximal sequence that
starts with ‘00’—for the sake of this example, we assume this is the case—then
we can stop exploring the tree further in this direction and cut off the tree at
the corresponding node. For the initial segment ‘101’, a similar situation occurs.
�

In order to get this idea to work, it is crucial to have a simple check that
allows us to conclude that none of the maximal state sequences in opt(𝒳1:𝑛|𝑜1:𝑛)
starts with some given initial segment. In other words, for any 𝑘 in {1, . . . , 𝑛}
and �̂�*

1:𝑘 in 𝒳1:𝑘, we need to be able to check if

(∀ �̂�1:𝑛 ∈ opt(𝒳1:𝑛|𝑜1:𝑛)) �̂�1:𝑘 ̸= �̂�*
1:𝑘. (C1)

By Eq. (8), this is equivalent to checking whether

(∀ �̂�𝑘+1:𝑛 ∈ 𝒳𝑘+1:𝑛) max
𝑥1:𝑛

∈𝒳1:𝑛

𝑘∏︁
𝑖=1

𝜒𝑖(𝑥𝑖, 𝑥𝑖−1, �̂�
*
𝑖 , �̂�

*
𝑖−1)𝜔𝑖(𝑥𝑖, �̂�

*
𝑖 , 𝑜𝑖)

𝜒𝑘+1(𝑥𝑘+1, 𝑥𝑘, �̂�𝑘+1, �̂�
*
𝑘)𝜔𝑘+1(𝑥𝑘+1, �̂�𝑘+1, 𝑜𝑘+1)

𝑛∏︁
𝑗=𝑘+2

𝜒𝑗(𝑥𝑗 , 𝑥𝑗−1, �̂�𝑗 , �̂�𝑗−1)𝜔𝑗(𝑥𝑗 , �̂�𝑗 , 𝑜𝑗) > 1.

⇔ min
�̂�𝑘+1:𝑛

∈𝒳𝑘+1:𝑛

max
𝑥1:𝑛

∈𝒳1:𝑛

𝑘∏︁
𝑖=1

𝜒𝑖(𝑥𝑖, 𝑥𝑖−1, �̂�
*
𝑖 , �̂�

*
𝑖−1)𝜔𝑖(𝑥𝑖, �̂�

*
𝑖 , 𝑜𝑖)

𝜒𝑘+1(𝑥𝑘+1, 𝑥𝑘, �̂�𝑘+1, �̂�
*
𝑘)𝜔𝑘+1(𝑥𝑘+1, �̂�𝑘+1, 𝑜𝑘+1)

𝑛∏︁
𝑗=𝑘+2

𝜒𝑗(𝑥𝑗 , 𝑥𝑗−1, �̂�𝑗 , �̂�𝑗−1)𝜔𝑗(𝑥𝑗 , �̂�𝑗 , 𝑜𝑗) > 1. (C1’)

The problem with criterion (C1’) is that it is very difficult to calculate the
maximum and minimum because they run over exponentially large spaces. In
order to circumvent this issue, one can split the global maximum into local
maxima that run over the individual states 𝑥𝑖 in 𝒳𝑖, and push these maxima
inside. This leads to the equivalent condition

min
�̂�𝑘+1:𝑛

∈𝒳𝑘+1:𝑛

max
𝑥1∈𝒳1

𝜒1(𝑥1,⊓⊔, �̂�*
1,⊓⊔)𝜔1(𝑥1, �̂�

*
1, 𝑜1) · · ·

max
𝑥𝑘∈𝒳𝑘

𝜒𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�
*
𝑘, �̂�

*
𝑘−1)𝜔𝑘(𝑥𝑘, �̂�

*
𝑘, 𝑜𝑘)

max
𝑥𝑘+1∈𝒳𝑘+1

𝜒𝑘+1(𝑥𝑘+1, 𝑥𝑘, �̂�𝑘+1, �̂�
*
𝑘)𝜔𝑘+1(𝑥𝑘+1, �̂�𝑘+1, 𝑜𝑘+1)

max
𝑥𝑘+2∈𝒳𝑘+2

𝜒𝑘+2(𝑥𝑘+2, 𝑥𝑘+1, �̂�𝑘+2, �̂�𝑘+1)𝜔𝑘+2(𝑥𝑘+2, �̂�𝑘+2, 𝑜𝑘+2)

· · · max
𝑥𝑛∈𝒳𝑛

𝜒𝑛(𝑥𝑛, 𝑥𝑛−1, �̂�𝑛, �̂�𝑛−1)𝜔𝑛(𝑥𝑛, �̂�𝑛, 𝑜𝑛) > 1. (C1”)

By applying a similar procedure to the global minimum, we finally obtain the
following inequality:

max
𝑥1∈𝒳1

𝜒1(𝑥1,⊓⊔, �̂�*
1,⊓⊔)𝜔1(𝑥1, �̂�

*
1, 𝑜1) · · ·

max
𝑥𝑘∈𝒳𝑘

𝜒𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�
*
𝑘, �̂�

*
𝑘−1)𝜔𝑘(𝑥𝑘, �̂�

*
𝑘, 𝑜𝑘)

min
�̂�𝑘+1∈𝒳𝑘+1

max
𝑥𝑘+1∈𝒳𝑘+1

𝜒𝑘+1(𝑥𝑘+1, 𝑥𝑘, �̂�𝑘+1, �̂�
*
𝑘)𝜔𝑘+1(𝑥𝑘+1, �̂�𝑘+1, 𝑜𝑘+1)

min
�̂�𝑘+2∈𝒳𝑘+2

max
𝑥𝑘+2∈𝒳𝑘+2

𝜒𝑘+2(𝑥𝑘+2, 𝑥𝑘+1, �̂�𝑘+2, �̂�𝑘+1)𝜔𝑘+2(𝑥𝑘+2, �̂�𝑘+2, 𝑜𝑘+2)

· · · min
�̂�𝑛∈𝒳𝑛

max
𝑥𝑛∈𝒳𝑛

𝜒𝑛(𝑥𝑛, 𝑥𝑛−1, �̂�𝑛, �̂�𝑛−1)𝜔𝑛(𝑥𝑛, �̂�𝑛, 𝑜𝑛) > 1. (C2)

However, this criterion is not equivalent to the previous ones. By pushing the
local minima inside and beyond the maxima, we obtain a number that, although
it is guaranteed never to be bigger, might be lower than the number we started
out from. Hence, criterion (C2) is only a sufficient condition for (C1) to hold.

Nevertheless, we prefer criterion (C2) over (C1) because it is easier to check.
Indeed, if for all 𝑘 in {1, . . . , 𝑛}, 𝑥𝑘 in 𝒳𝑘 and �̂�1:𝑘 in 𝒳1:𝑘, we consider the
parameters 𝛾𝑘(𝑥𝑘, �̂�𝑘) and 𝛿𝑘(𝑥𝑘, �̂�1:𝑘), as defined recursively by

𝛾𝑘(𝑥𝑘, �̂�𝑘) := min
�̂�𝑘+1∈𝒳𝑘+1

max
𝑥𝑘+1∈𝒳𝑘+1

𝜒𝑘+1(𝑥𝑘+1, 𝑥𝑘, �̂�𝑘+1, �̂�𝑘)

𝜔𝑘+1(𝑥𝑘+1, �̂�𝑘+1, 𝑜𝑘+1)𝛾𝑘+1(𝑥𝑘+1, �̂�𝑘+1)

and

𝛿𝑘(𝑥𝑘, �̂�1:𝑘) := max
𝑥𝑘−1∈𝒳𝑘−1

𝜒𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�𝑘, �̂�𝑘−1)𝜔𝑘(𝑥𝑘, �̂�𝑘, 𝑜𝑘)𝛿𝑘−1(𝑥𝑘−1, �̂�1:𝑘−1),

starting from 𝛾𝑛(𝑥𝑛, �̂�𝑛) := 1 and 𝛿1(𝑥1, �̂�1) := 𝜒1(𝑥1,⊓⊔, �̂�1,⊓⊔)𝜔1(𝑥1, �̂�1, 𝑜1),
then it is relatively easy to see that criterion (C2) reduces to the following
simple inequality:

max
𝑥𝑘∈𝒳𝑘

𝛿𝑘(𝑥𝑘, �̂�
*
1:𝑘)𝛾𝑘(𝑥𝑘, �̂�

*
𝑘) > 1. (C2’)

Whenever (C2’) holds, we are guaranteed that (C1) holds as well and therefore,
that there are no maximal state sequences that start with �̂�*

1:𝑘. As we will see,
it is now but a small step to turn this into a working algorithm.

For 𝑘 = 𝑛, criterion (C2’) is even more powerful. In that case, the minima
in expressions (C1’), (C1”) and (C2) disappear, thereby making these condi-
tions equivalent. Hence, we find that for 𝑘 = 𝑛, (C1) and (C2’) are equivalent.
Furthermore, criterion (C2’) now reduces to

max
𝑥𝑛∈𝒳𝑛

𝛿𝑛(𝑥𝑛, �̂�
*
1:𝑛) > 1 (C2*)

and (C1) and therefore also (C2*) serves as a necessary as well as sufficient
condition for �̂�*

1:𝑛 not to be maximal: �̂�*
1:𝑛 is a maximal state sequence if and

only if criterion (C2*) fails.

5.2 Turning it into an Algorithm

It is relatively easy to turn the ideas and formulas of the previous section into
a working algorithm that is able to construct the set optmax(𝒳1:𝑛|𝑜1:𝑛) in an
efficient manner. Algorithm 1 provides a pseudo-code version. As input data,
it requires an output sequence 𝑜1:𝑛, the local parameters 𝜒𝑘 and 𝜔𝑘 and the
global parameters 𝛾𝑘. All these parameters can—and should—be calculated be-
forehand. Note that this is not the case for the parameters 𝛿𝑘; it is not feasible
to calculate these beforehand, as there are simply too many.

Algorithm 1: MaxiHMM

Data: the local parameters 𝜒𝑘 and 𝜔𝑘, an output sequence 𝑜1:𝑛, and
the corresponding global parameters 𝛾𝑘

Result: the set opt(𝒳1:𝑛|𝑜1:𝑛) of all maximal state sequences

1 opt(𝒳1:𝑛|𝑜1:𝑛)← ∅

2 for �̂�1 ∈ 𝒳1 do
3 for 𝑥1 ∈ 𝒳1 do
4 𝛿1(𝑥1, �̂�1)← 𝜒1(𝑥1, �̂�1)𝜔1(𝑥1, �̂�1, 𝑜1)

5 if max
𝑥1∈𝒳1

𝛿1(𝑥1, �̂�1)𝛾1(𝑥1, �̂�1) ≤ 1 then Recur(1, �̂�1, 𝛿1(· , �̂�1))

6 return opt(𝒳1:𝑛|𝑜1:𝑛)

Procedure Recur(𝑘, �̂�1:𝑘, 𝛿𝑘(· , �̂�1:𝑘))

1 if 𝑘 = 𝑛 then
2 add �̂�1:𝑛 to opt(𝒳1:𝑛|𝑜1:𝑛) ◁ We found a solution!

3 else
4 for �̂�𝑘+1 ∈ 𝒳𝑘+𝑛 do
5 �̂�1:𝑘+1 ← (�̂�1:𝑘, �̂�𝑘+1) ◁ Append �̂�𝑘+1 to the end of �̂�1:𝑘

6 for 𝑥𝑘+1 ∈ 𝒳𝑘+1 do
7 𝛿𝑘+1(𝑥𝑘+1, �̂�1:𝑘+1)← max

𝑥𝑘∈𝒳𝑘

𝜒𝑘+1(𝑥𝑘+1, 𝑥𝑘, �̂�𝑘+1, �̂�𝑘)
8 𝜔𝑘+1(𝑥𝑘+1, �̂�𝑘+1, 𝑜𝑘+1)

9 𝛿𝑘(𝑥𝑘, �̂�1:𝑘)

10 if max
𝑥𝑘+1∈𝒳𝑘+1

𝛿𝑘+1(𝑥𝑘+1, �̂�1:𝑘+1)𝛾𝑘+1(𝑥𝑘+1, �̂�𝑘+1) ≤ 1 then

11 Recur(𝑘 + 1, �̂�1:𝑘+1, 𝛿1(· , �̂�1:𝑘+1))

The Procedure Recur implements the recursive nature of our algorithm. In
it, we traverse the search tree that corresponds to 𝒳1:𝑛 in depth-first order.
That is, if the algorithm is unable to infer that there are no maximal sequences
starting with �̂�1:𝑘—if criterion (C2’) fails—it presumes there are and immedi-

ately descends to depth 𝑘 + 1 to check criterion (C2’) again. In order to be
able to perform this check for 𝑘 + 1, we need the parameters 𝛿𝑘+1(𝑥𝑘+1, �̂�1:𝑘+1),
which—as said before—have not been calculated beforehand. However, luckily,
these parameters can easily be calculated while running the algorithm, based on
the parameters 𝛿𝑘(𝑥𝑘, �̂�1:𝑘) that were used in the previous step; see Lines 7–9 of
the Procedure Recur.

When we arrive at depth 𝑛, we check criterion (C2’)—which is now equiv-
alent to (C2*)—and, if it fails, we add the current sequence �̂�1:𝑛 to the solu-
tion set. After all, if criterion (C2*) fails, we are guaranteed to have found a
maximal solution. Since, while running the algorithm, we have only “ignored”
sequences that were definitely not maximal—because criterion (C2’) was true—
this means that the MaxiHMM algorithm does indeed succeed in constructing
the set optmax(𝒳1:𝑛|𝑜1:𝑛) correctly.

Example 2. In Figure 2, the MaxiHMM algorithm starts by checking criterion (C2’)
for �̂�1 = 0. The criterion fails, and therefore, the algorithm descends to depth
2, now checking criterion (C2’) for �̂�1:2 = 00. This time, the criterion is true,
allowing us to “ignore” all the sequences that start with ‘00’. Next, the algorithm
checks criterion (C2’) for �̂�1:2 = 01, which turns out to be false. By proceeding
in this way, we eventually find that in this case, optmax(𝒳1:4|𝑜1:4) consists of
three maximal sequences: ‘0100’, ‘0111’ and ‘1000’. �

5.3 Complexity Analysis

The time complexity of the MaxiHMM algorithm depends on a number of fac-
tors. First of all, we have to take into account the size 𝑆 of the set optmax(𝒳1:𝑛|𝑜1:𝑛)
we are looking for. After all, if all state sequences in 𝒳1:𝑛 are maximal, then no
single branch can be pruned from the search tree. In that case, the complete tree
has to be traversed, which clearly has a time complexity that is exponential in
𝑛. Note that this is far from surprising: in this case, even simply printing all the
maximal sequences has such a complexity.

In general, our algorithm is linear in the number of times criterion (C2’)
fails or, equivalently, the number of times we execute Line 5 of the MaxiHMM
algorithm or Line 11 of the Procedure Recur. For ease of reference, let us denote
this number by 𝐶. For example, in Figure 2, 𝐶 is the number of 3-signs. By
taking a closer look at the pseudo-code of our algorithm, we find that it has a
time complexity of the order O

(︀
𝐶𝑚2

)︀
.

Let us now assume that criterion (C2’) is equivalent to (C1). Then every
time criterion (C2’)—and hence (C1)—fails, the current node in the search tree
is guaranteed to be part of a maximal state sequence. Since there are 𝑆 maximal
state sequences, each of which consists of 𝑛 nodes, we find that 𝐶 is bounded
above by 𝑆𝑛. Hence, under the assumption that (C2’) is equivalent to (C1), the
time complexity of our algorithm is O

(︀
𝑆𝑛𝑚2

)︀
. Interestingly, this is linear in the

number of maximal sequences 𝑆. It is also comparable to the complexity of the
Viterbi algorithm, since in that particular case, 𝑆 = 1.

Of course, as explained in Section 5.1, the criteria (C1) and (C2’) are not
equivalent and therefore, from a theoretical point of view, the aforementioned
complexity cannot be guaranteed. For example, it might occur that 𝐶 > 𝑆𝑛;
in Figure 2, we see that 13 = 𝐶 > 𝑆𝑛 = 12. Nevertheless, it turns out that in
practice—we illustrate this in Section 7.1—the time complexity of our algorithm
tends to increase linearly in 𝑆. This suggests that—despite the fact that criteria
(C2’) and (C1) are not guaranteed to be identical—the aforementioned time
complexity of O

(︀
𝑆𝑛𝑚2

)︀
might be a good approximation of reality.

6 Common Local Models and Their Parameters

In order to apply the above algorithm, all that is needed are the local parameters
𝜔𝑘 and 𝜒𝑘. For general compact local models, these can be obtained by applying
the formulas in Section 4.1. However, for some specific classes of local models,
closed-form expressions for these parameters are available as well. In the fol-
lowing, we discuss two such instances: local models that are obtained by means
of 𝜖-contamination and local models that are derived from data using Walley’s
Imprecise Dirichlet Model (IDM) [7].

6.1 Frequently Used Imprecise-Probabilistic Models

The perhaps simplest way to obtain an imprecise local model is to 𝜖-contaminate
a mass function 𝑝 in Σ𝒳 . For any 𝜖 in [0, 1], the corresponding 𝜖-contaminated
model is defined as

ℳ𝜖
𝑝 := {(1− 𝜖)𝑝 + 𝜖𝑞 : 𝑞 ∈ Σ𝒳 } .

It is a closed, bounded and therefore also compact subset of Σ𝒳 . For 𝜖 = 0,
we find that ℳ0

𝑝 = {𝑝}, thereby recovering the precise-probabilistic case. As
𝜖 increases, additional mass functions are added. For 𝜖 = 1, ℳ1

𝑝 is equal to
Σ𝒳 , thereby representing complete model uncertainty. In order to satisfy our
positivity assumption, we require that 𝑝 is an element of intΣ𝒳 and that 𝜖 < 1.

The corresponding lower and upper probabilities are easily calculated. For
example, if |𝒳 | ≥ 2, then for any singleton 𝑥 ∈ 𝒳 , we find that

𝑝𝜖(𝑥) := max
{︀
𝑝(𝑥) : 𝑝 ∈ℳ𝜖

𝑝

}︀
= (1− 𝜖)𝑝 (𝑥) + 𝜖, (9)

𝑝
𝜖
(𝑥) := min

{︀
𝑝(𝑥) : 𝑝 ∈ℳ𝜖

𝑝

}︀
= (1− 𝜖)𝑝 (𝑥) . (10)

Example 3. Consider a ternary sample space 𝒳 = {𝑎, 𝑏, 𝑐}. Then any probability
mass function 𝑝 on 𝒳 can be identified with a point in an equilateral triangle with
height one, which represents the simplex Σ𝒳 ; see Figure 3. The 𝜖-contaminated
modelℳ𝜖

𝑝 is represented by an equilateral triangle with height 𝜖, which ‘grows’
around 𝑝 as 𝜖 increases. �

The following lemma establishes a technical property of 𝜖-contaminated mod-
els that will enable us to obtain closed-form expressions for the local parameters
𝜔𝑘 and 𝜒𝑘.

𝑎

𝑏

𝑐

Σ𝒳 ℳ𝜖
𝑝

𝑝

1
𝜖

𝑝
𝜖
(𝑏)

𝑝𝜖(𝑏)
𝑝 (𝑏)

Fig. 3. Constructing an 𝜖-contaminated model.

Proposition 2. Consider any 𝑝 ∈ int(Σ𝒳), with |𝒳 | ≥ 2, and any 𝜖 ∈ [0, 1).
Thenℳ𝜖

𝑝 ⊆ int Σ𝒳 and, for all 𝑥, �̂� ∈ 𝒳 such that 𝑥 ̸= �̂�:

min
𝑝′∈ℳ𝜖

𝑝

𝑝′(𝑥)

𝑝′(�̂�)
=

𝑝
𝜖
(𝑥)

𝑝𝜖(�̂�)
.

Besides 𝜖-contamination, another popular method for constructing imprecise
local models is to derive them from data by means of Walley’s IDM; see Ref. [7]
for a thorough discussion. For our presents purposes, it suffices to mention that
the resulting predictive model on 𝒳 coincides with an 𝜖-contaminated model
ℳ𝜖

𝑝, with 𝑝 and 𝜖 constructed as follows. For a data set of 𝑛 experiments, 𝑛𝑥 of
which are equal to 𝑥, we let 𝑝(𝑥) := 𝑛𝑥/𝑛. Furthermore, 𝜖 := 𝑠/𝑛+𝑠, where 𝑠 > 0
is a parameter of the IDM that can be interpreted as a degree of cautiousness.
In order for our positivity assumption to be satisfied, we require that, for all
𝑥 ∈ 𝒳 , 𝑛𝑥 > 0. Using this connection between the IDM and 𝜖-contamination,
we find that, with |𝒳 | ≥ 2, for any 𝑥 ∈ 𝒳 :

𝑝
IDM

(𝑥) :=
𝑛𝑥

𝑛 + 𝑠
and 𝑝IDM(𝑥) :=

𝑛𝑥 + 𝑠

𝑛 + 𝑠
.

6.2 Local Parameters for an 𝜖-contaminated Model

An important advantage of working with 𝜖-contaminated local models (and
therefore also the IDM) is that the corresponding local parameters 𝜔𝜖

𝑘 and 𝜒𝜖
𝑘

are extremely easy to calculate.

For 𝜔𝜖
𝑘(𝑥𝑘, �̂�𝑘, 𝑜𝑘), it suffices to plug the local lower and upper probabilities,

as obtained by Eqs. (9) and (10), into the expression that is provided by Proposi-
tion 1. We can proceed in much the same way to calculate 𝜒𝜖

𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�𝑘, �̂�𝑘−1),
except if 𝑥𝑘 ̸= �̂�𝑘 and 𝑥𝑘−1 = �̂�𝑘−1. However, luckily, in this case, Proposition 2
is applicable, which allows us to optimise the numerator and denominator in
Eq. (5) separately anyway, as in the case 𝑥𝑘−1 ̸= �̂�𝑘−1. Hence, we find that

𝜒𝜖
𝑘(𝑥𝑘, 𝑥𝑘−1, �̂�𝑘, �̂�𝑘−1) =

{︃
1 if 𝑥𝑘 = �̂�𝑘 and 𝑥𝑘−1 = �̂�𝑘−1,
𝑝𝜖

𝑘
(𝑥𝑘|𝑥𝑘−1)

𝑝𝜖
𝑘(𝑥𝑘|�̂�𝑘−1)

if 𝑥𝑘 ̸= �̂�𝑘 or 𝑥𝑘−1 ̸= �̂�𝑘−1.

7 Experiments

We conclude this paper with a number of experiments. In order to allow us to
visualise them easily, we focus on binary (i)HMMs. Hence, for all 𝑘 in {1, . . . , 𝑛}:
𝒳𝑘 = 𝒪𝑘 := {0, 1}. We start from a precise stationary HMM. By stationarity,
and since binary mass functions can be specified by means of a single number,
the local models of this HMM are completely characterised by five numbers:
𝑞(0|0) = 0.9, 𝑞(0|1) = 0.1, 𝑝1(0) = 0.5, 𝑙 := 𝑝(0|0) and 𝑚 := 𝑝(0|1). We turn this
precise HMM into an imprecise one by 𝜖-contaminating all of its local models
with the same 𝜖. In this way, we obtain a stationary iHMM, meaning that the
imprecise local models do not depend on 𝑘. Note however that, by Eq. (2),
the corresponding family of precise HMMs contains stationary as well as non-
stationary ones.

0 5,000 10,000 15,000

0

5,000

10,000

15,000

20,000

Number of maximal state sequences

E
x
ec
u
ti
o
n
ti
m
e
[m

s]

Fig. 4. Scatterplot of 760 + 10 complexity experiments.

7.1 Computational Complexity Experiments

We begin by corroborating the statement that was made in Section 5.3: that in
practice, the time complexity of our algorithm tends to increase linearly in the
number of maximal state sequences. Figure 4 illustrates the correlation between
the execution time of the algorithm and the number of maximal sequences it
produces. For these experiments, we chose 𝑙 = 0.9 and 𝑚 = 0.1. The grey dots
correspond to 760 randomly generated output sequences of length 𝑛 = 100, with
values of 𝜖 ranging from 0.01 to 0.1. We clearly recognise some kind of cone,
which already suggests that the execution time increases linearly in the number

of maximal sequences. In black, we plot the results for three additional random
but fixed sequences, for different values of 𝜖; experiments that correspond to the
same output sequence have been connected. This time, the observed linearity is
rather striking.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 1𝑙

𝑚

0

1

(a) 𝜖 = 0.02

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 1𝑙

𝑚

0

1

(b) 𝜖 = 0.05

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 1𝑙

𝑚

0

1

(c) 𝜖 = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 1𝑙

𝑚

0

1

(d) 𝜖 = 0.15

Fig. 5. Number of maximal state sequences, for different local models.

7.2 A Closer Look at the Number of Maximal State Sequences

Since the complexity of our algorithm depends so crucially on the number of
maximal sequences it returns, we will now take a closer look at this number and
investigate the extent to which it depends on the local models of our iHMM.
We do this by visualising the number of maximal sequences as a function of the
transition probabilities 𝑙 and 𝑚 in four heat plots, each of which corresponds
to a different value for 𝜖. The output sequence is ‘1100110011’, with 𝑛 = 10.
The results are depicted in Figure 5. White corresponds to a single maximal
sequences, whereas pitch black corresponds to 200 sequences being maximal.

As expected, the number of maximal state sequences increases with 𝜖. That
is, the regions that correspond to a higher number of maximal sequences become

wider as 𝜖 increases. The maximum number of maximal sequences that can be
observed in these plots is about 160—for 𝜖 = 0.15, the tiny black dot near the
upper left corner of the heat plot (𝑙 = 0.1 and 𝑚 = 0.9). Note that this is only
16% of the maximum number possible, which is 210 = 1024. The large, (dark)
gray regions correspond to 77 maximal sequences. Finally, and this is rather
remarkable, we observe that there are fairly large regions in which—even for
𝜖 = 0.15—there is only one maximal state sequence.

8 Conclusions and Future Work

The main contribution of this paper is an algorithm that can construct the
set of all maximal state sequences of an iHMM in an efficient manner, thereby
providing a robust version of the Viterbi algorithm. Our experiments show that
the time complexity of this algorithm tends to increase linearly in the number of
maximal state sequences. Finally, we have illustrated how this number depends
upon the parameters of the iHMM.

We see a number of interesting avenues for future research, the most impor-
tant of which is perhaps to apply our algorithm to a real-life problem, and to
compare the results with those of the Viterbi algorithm. Another, more theoret-
ically oriented line of research is to develop the algorithm without the positivity
assumption. Finally, we would like to see whether the ideas in this paper can be
used to develop similarly efficient algorithms for credal networks whose graphical
structure is more complicated than that of an HMM.

Acknowledgements Jasper De Bock is a PhD Fellow of the Research Foun-
dation Flanders (FWO) and wishes to acknowledge its financial support. The
authors would also like to thank Alessandro Antonucci and Cassio P. de Campos
for a number of stimulating discussions on the topic of this paper.

References

1. Cozman, F.G.: Credal networks. Artificial Intelligence 120, 199-233 (2000)
2. De Bock, J., De Cooman, G.: State sequence prediction in imprecise hidden Markov

models. In: 7th ISIPTA (2011)
3. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech

recognition. In: Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286 (1989)
4. Troffaes, M.C.M.: Decision making under uncertainty using imprecise probabilities.

International Journal of Approximate Reasoning 45, 17–29 (2007)
5. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. In: IEEE Transactions on Information Theory, vol. 13, no. 2,
pp. 260–269 (1967)

6. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman & Hall
(1991)

7. Walley, P.: Inferences from Multinomial Data: Learning about a Bag of Marbles.
Journal of the Royal Statistical Society Series B 58, no. 1, 3-57 (1996)

	Robustifying the Viterbi algorithm
	Introduction
	Hidden Markov models
	Local Uncertainty Models
	Constructing a Joint Model
	The Viterbi Algorithm

	Imprecise Hidden Markov Models
	Local Imprecise Uncertainty Models
	Constructing an Imprecise Joint Model
	Generalising the Notion of Optimality

	A More Convenient Characterisation of Maximality
	Defining the Local Parameters
	Rewriting the Solution Set

	A Recursive Algorithm
	Ruling out Multiple Sequences at Once
	Turning it into an Algorithm
	Complexity Analysis

	Common Local Models and Their Parameters
	Frequently Used Imprecise-Probabilistic Models
	Local Parameters for an -Contaminated Model

	Experiments
	Computational Complexity Experiments
	A Closer Look at the Number of Maximal State Sequences

	Conclusions and Future Work
	Acknowledgements

