The marginal problem for sets of desirable gamble sets

Justyna Dąbrowska 18 July 2025

UAI group in Eindhoven

Cassio de Campos

Erik Quaeghebeur

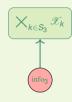
Arthur Van Camp

Thomas Krak

Macro Sangalli

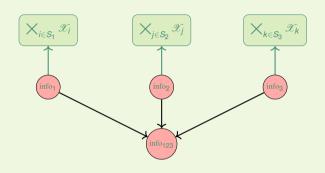
Justyna Dąbrowska

Cartesian domains



Cartesian domains

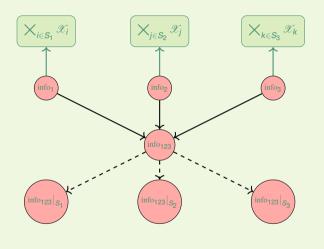
Local information (e.g. pmfs, desirable gambles)



Cartesian domains

Local information (e.g. pmfs, desirable gambles)

Combination (e.g. ×, natural extension)



Cartesian domains

Local information

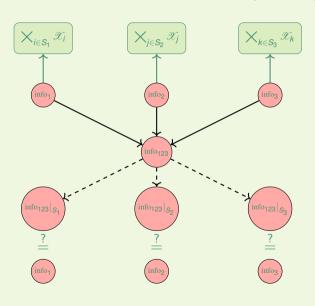
(e.g. pmfs, desirable gambles)

Combination

(e.g. \times , natural extension)

Marginalization

(projected back to smaller scopes)



Cartesian domains

Local information

(e.g. pmfs, desirable gambles)

Combination

(e.g. \times , natural extension)

Marginalization

(projected back to smaller scopes)

Question:

Do we recover the original information?

Want to express that f is desirable or g is desirable.

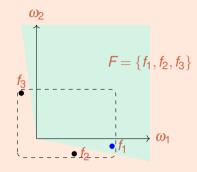
Want to express that f is desirable or g is desirable.

In other words, in the set $\{f,g\}$, at least one is desirable.

Definition: A set *F* is a *desirable gamble set* if it contains at least one desirable gamble.

Want to express that f is desirable or g is desirable.

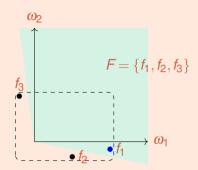
In other words, in the set $\{f,g\}$, at least one is desirable.



Definition: A set *F* is a *desirable gamble set* if it contains at least one desirable gamble.

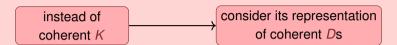
Want to express that f is desirable or g is desirable.

In other words, in the set $\{f,g\}$, at least one is desirable.

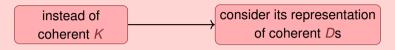


Definition: A set *F* is a *desirable gamble set* if it contains at least one desirable gamble.

Representations



Representations



$$\mathcal{K} := \bigcap_{D \in \mathscr{D}} \mathcal{K}_D = \bigcap_{D \in \mathscr{D}} \{ \text{gamble sets } F : F \cap D \neq \emptyset \}$$

 \mathscr{D} is a representation of KK is represented by \mathscr{D}

Representations

instead of coherent K consider its representation of coherent Ds

$$\mathcal{K} := \bigcap_{D \in \mathscr{D}} \mathcal{K}_D = \bigcap_{D \in \mathscr{D}} \{ \text{gamble sets } F : F \cap D \neq \emptyset \}$$

 \mathcal{D} is a representation of KK is represented by \mathcal{D}

- \bigoplus largest representation: $\mathscr{D}_K := \{ \text{coherent } Ds : K \subseteq K_D \}$
- + finite representation: there is a finite \mathscr{D} representing K.

Consider some K, its largest representation \mathcal{D}_K , some $D_1, D_2 \in \mathcal{D}_K$ with $D_1 \subseteq D_2$:

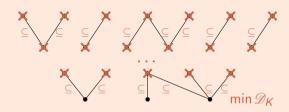
$$\implies K_{D_1} \subseteq K_{D_2}$$

$$\implies \bigcap_{D \in \mathscr{D}_K} K_D = \bigcap_{D \in \mathscr{D}_K \setminus \{D_2\}} K_D$$

Consider some K, its largest representation \mathcal{D}_K , some $D_1, D_2 \in \mathcal{D}_K$ with $D_1 \subseteq D_2$:

$$\implies K_{D_1} \subseteq K_{D_2}$$

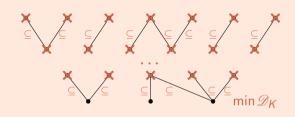
$$\implies \bigcap_{D \in \mathscr{D}_K} K_D = \bigcap_{D \in \mathscr{D}_K \setminus \{D_2\}} K_D$$



Consider some K, its largest representation \mathcal{D}_K , some $D_1, D_2 \in \mathcal{D}_K$ with $D_1 \subseteq D_2$:

$$\implies K_{D_1} \subseteq K_{D_2}$$

$$\implies \bigcap_{D \in \mathscr{D}_K} K_D = \bigcap_{D \in \mathscr{D}_K \setminus \{D_2\}} K_D$$



Continuing this way, we obtain the set of minimal elements:

$$\min \mathscr{D}_{K} := \{ D \in \mathscr{D}_{K} : (\forall D' \in \mathscr{D}_{K}) D' \subseteq D \implies D' = D \}$$

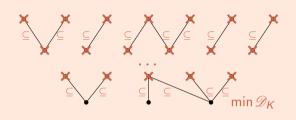
which satisfies

- min $\mathcal{D}_K \neq \emptyset$;
- $\mathscr{D}_K = \uparrow \min \mathscr{D}_K$;
- $\min \mathscr{D}_K$ represents K.

Consider some K, its largest representation \mathcal{D}_K , some $D_1, D_2 \in \mathcal{D}_K$ with $D_1 \subseteq D_2$:

$$\implies K_{D_1} \subseteq K_{D_2}$$

$$\implies \bigcap_{D \in \mathscr{D}_K} K_D = \bigcap_{D \in \mathscr{D}_K \setminus \{D_2\}} K_D$$



Continuing this way, we obtain the set of minimal elements:

$$\min \mathscr{D}_K := \{D \in \mathscr{D}_K : (\forall D' \in \mathscr{D}_K)D' \subseteq D \implies D' = D\}$$

which satisfies

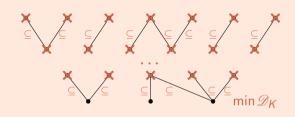
- $\min \mathscr{D}_K \neq \emptyset$;
- $\mathscr{D}_{K} = \uparrow \min \mathscr{D}_{K}$.
- $\min \mathcal{D}_K$ represents K.

? Is it defined only for the largest representations?

Consider some K, its largest representation \mathcal{D}_K , some $D_1, D_2 \in \mathcal{D}_K$ with $D_1 \subseteq D_2$:

$$\implies K_{D_1} \subseteq K_{D_2}$$

$$\implies \bigcap_{D \in \mathscr{D}_K} K_D = \bigcap_{D \in \mathscr{D}_K \setminus \{D_2\}} K_D$$



Continuing this way, we obtain the set of minimal elements:

$$\min \mathscr{D}_K := \{D \in \mathscr{D}_K : (\forall D' \in \mathscr{D}_K)D' \subseteq D \implies D' = D\}$$

which satisfies

- $\min \mathcal{D}_K \neq \emptyset$;
- $\mathscr{D}_K = \uparrow \min \mathscr{D}_K$;
- $\min \mathcal{D}_K$ represents K.

? Is it defined only for the largest representations?

(+) It might be empty for other representations than the largest.

Pairwise Compatibility

Consider two sets:

$$K_1 \subseteq \mathcal{Q}(\mathscr{X}_{S_1}), \quad K_2 \subseteq \mathcal{Q}(\mathscr{X}_{S_2}).$$

Definition

Sets of desirable gamble sets K_1 and K_2 are said to be *pairwise compatible* if:

$$\mathrm{Marg}_{\mathcal{S}_1\cap\mathcal{S}_2}K_1=\mathrm{Marg}_{\mathcal{S}_1\cap\mathcal{S}_2}K_2.$$

In other words, their marginals agree on the common domain.

Pairwise Compatibility

Consider two sets:

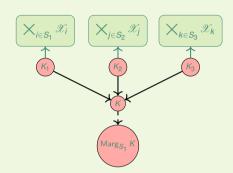
$$K_1\subseteq \mathscr{Q}(\mathscr{X}_{S_1}), \quad K_2\subseteq \mathscr{Q}(\mathscr{X}_{S_2}).$$

Definition

Sets of desirable gamble sets K_1 and K_2 are said to be *pairwise compatible* if:

$$\operatorname{Marg}_{S_1 \cap S_2} K_1 = \operatorname{Marg}_{S_1 \cap S_2} K_2.$$

In other words, their marginals agree on the common domain.



Pairwise Compatibility

Consider two sets:

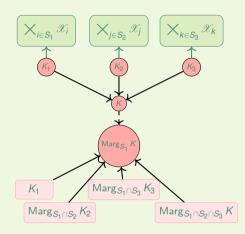
$$K_1 \subseteq \mathcal{Q}(\mathscr{X}_{S_1}), \quad K_2 \subseteq \mathcal{Q}(\mathscr{X}_{S_2}).$$

Definition

Sets of desirable gamble sets K_1 and K_2 are said to be *pairwise compatible* if:

$$\mathrm{Marg}_{\mathcal{S}_1\cap\mathcal{S}_2}K_1=\mathrm{Marg}_{\mathcal{S}_1\cap\mathcal{S}_2}K_2.$$

In other words, their marginals agree on the common domain.



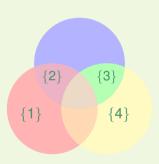
? What if there is some information inside the intersection of more than two domains?

RIP (Running Intersection Property)

$$(orall \ell \in \{2,\ldots,m\})(\exists i^\star < \ell) \mathcal{S}_\ell \cap \mathcal{S}_{i^\star} = \mathcal{S}_\ell \cap \bigcup_{i \in \ell} \mathcal{S}_i$$

RIP (Running Intersection Property)

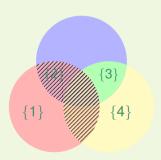
$$(\forall \ell \in \{2,\ldots,m\})(\exists i^{\star} < \ell)S_{\ell} \cap S_{i^{\star}} = S_{\ell} \cap \bigcup_{i < \ell} S_{i}$$



Satisfies RIP For some order(s)

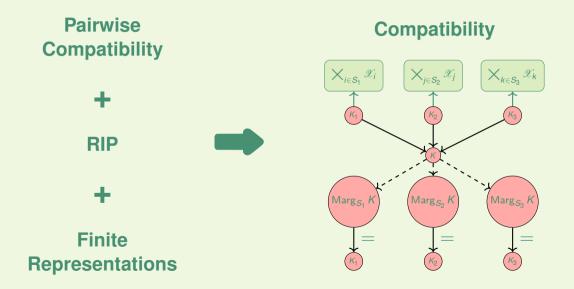
RIP (Running Intersection Property)

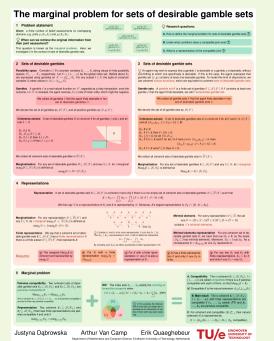
$$(\forall \ell \in \{2,\ldots,m\})(\exists i^{\star} < \ell)S_{\ell} \cap S_{i^{\star}} = S_{\ell} \cap \bigcup_{i < \ell} S_{i}$$



Satisfies RIP For some order(s)

Compatibility for sets of desirable gamble sets





For questions, please come to my poster!