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Sets of Desirable Gamble Sets

Want to express that f is desirable
or g is desirable.

In other words, in the set {f ,g}, at least
one is desirable.
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Definition: A set F is a desirable gamble set if it contains at least one desirable gamble.
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Representations

instead of
coherent K

consider its representation
of coherent Ds

K :=
⋂

D∈D

KD =
⋂

D∈D

{gamble sets F : F∩D ̸= /0}

D is a representation of K
K is represented by D

largest representation: DK := {coherent Ds : K ⊆ KD}
finite representation: there is a finite D representing K .
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Representation (continued)
Consider some K , its largest representation DK , some D1,D2 ∈ DK with D1 ⊆ D2:

=⇒ KD1 ⊆ KD2

=⇒
⋂

D∈DK
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⋂
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· · ·
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Continuing this way, we obtain the set of minimal elements:

minDK := {D ∈ DK : (∀D′ ∈ DK )D′ ⊆ D =⇒ D′ = D}

which satisfies
• minDK ̸= /0;
• DK =↑minDK ;
• minDK represents K .

Is it defined only for the largest representations?

It might be empty for other representations
than the largest.
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Pairwise Compatibility

Consider two sets:

K1 ⊆ Q(XS1), K2 ⊆ Q(XS2).

Definition
Sets of desirable gamble sets K1 and K2 are said
to be pairwise compatible if:

MargS1∩S2
K1 = MargS1∩S2

K2.

In other words, their marginals agree on the
common domain.
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inside the intersection of more than two
domains?



Pairwise Compatibility

Consider two sets:

K1 ⊆ Q(XS1), K2 ⊆ Q(XS2).

Definition
Sets of desirable gamble sets K1 and K2 are said
to be pairwise compatible if:

MargS1∩S2
K1 = MargS1∩S2

K2.

In other words, their marginals agree on the
common domain.

×i∈S1
Xi ×j∈S2

Xj ×k∈S3
Xk

K1 K2 K3

K

MargS1
K

K1

MargS1∩S2
K2

MargS1∩S3
K3

MargS1∩S2∩S3
K

What if there is some information
inside the intersection of more than two
domains?



Pairwise Compatibility

Consider two sets:

K1 ⊆ Q(XS1), K2 ⊆ Q(XS2).

Definition
Sets of desirable gamble sets K1 and K2 are said
to be pairwise compatible if:

MargS1∩S2
K1 = MargS1∩S2

K2.

In other words, their marginals agree on the
common domain.

×i∈S1
Xi ×j∈S2

Xj ×k∈S3
Xk

K1 K2 K3

K

MargS1
K

K1

MargS1∩S2
K2

MargS1∩S3
K3

MargS1∩S2∩S3
K

What if there is some information
inside the intersection of more than two
domains?



RIP (Running Intersection Property)
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For some order(s)
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Compatibility for sets of desirable gamble sets

Pairwise
Compatibility

+
RIP

+
Finite

Representations

Compatibility
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For questions, please come to my
poster!


