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Abstract
We study the marginal problem for sets of desirable
gamble sets (SoDGSes), which is equivalent to study-
ing this problem for choice functions. More specifi-
cally, given a number of marginal SoDGSes on over-
lapping domains, we establish conditions under
which they are compatible in the sense that they
can be derived from a common joint SoDGS. We do
so for SoDGSes that admit a concrete finite repre-
sentation. Our main result is that such SoDGSes are
compatible if they are pairwise compatible and if a
running intersection property is satisfied.
Keywords. Sets of desirable gamble sets, choice
functions, marginal problem, representation

1. Introduction
Consider a probability mass function 𝑝1 describing an

agent’s beliefs about the uncertain variables 𝑋1 and 𝑋2,
and a probability mass function 𝑝2 describing beliefs
about the uncertain variables 𝑋2 and 𝑋3. When are they
compatible, in the sense that they are derived from a com-
mon joint 𝑝 about 𝑋1, 𝑋2 and 𝑋3? This problem is called
the ‘marginal problem’: the compatibility of a number of
marginal uncertainty models with a joint model. The dif-
ficulty here is that 𝑝1 and 𝑝2 both represent the variable
𝑋2: their respective domains ‘overlap’. So one necessary
condition for a positive answer to the marginal problem,
is that 𝑝1 and 𝑝2 marginalise to a common probability
mass function for 𝑋2. The marginal problem has been
studied extensively for probabilities in the past [4, 17]
and more recently [23, and references therein].
Our inspiration for this paper is the work of Miranda

and Zaffalon [23], who studied the marginal problem
for sets of desirable gambles, and obtained sufficient
conditions that guarantee a positive answer. We study
the marginal problem for sets of desirable gamble sets
(‘SoDGSes’ – singular ‘SoDGS’), thereby generalising
some of their results. SoDGSes attribute desirability to
sets of gambles rather than to gambles. When an agent
finds a set {𝑓, 𝑔} desirable – preferred over the status quo
indicated by 0 – this means that one of 𝑓 or 𝑔 is preferred
over 0, but she might not be able to identify which of 𝑓
or 𝑔 is preferred over 0. As such, SoDGSes are capable

of modelling disjunctions of preference statements [11],
and this makes them among the most expressive uncer-
tainty models in the literature of imprecise probabilities.
They are equivalent to imprecise-probabilistic choice
functions, which were introduced by Kadane et al. [18]
and Seidenfeld et al. [29]. Choice functions and SoDGSes
are gaining popularity, and various investigations of foun-
dational aspects have recently been carried out [3, 8, 11,
14, 16, 31, 32].
One advantage of SoDGSes and choice functions is

that they are easy to work with from a theoretical point
of view, thanks to their representation in terms of a col-
lection of partial preference orders – a collection of sets
of desirable gambles. In this paper we solve the marginal
problem for an interesting subclass of SoDGSes, namely
those that admit a finite representation.
In the study of the marginal problem for sets of de-

sirable gambles by Casanova et al. [6], they followed a
different approach than the one byMiranda and Zaffalon
[23]: they solved the marginal problem for any valuation
algebra, and have shown that coherent sets of desirable
gambles form such an algebra. In our current study of
themarginal problem for SoDGSes, we do not follow this
approach, as it would not lead to a representation of the
SoDGS compatible with the given SoDGSes in terms of a
collection of sets of desirable gambles. Instead, we follow
a more direct approach, which, as we will see, will lead
to a representation of the compatible joint.
We first recall the theory of SoDGSes (Section 2). This

is followed by our contributions concerning the finite
representation (Section 3). Then we discuss multivariate
SoDGSes in the by then established context (Section 4)
in preparation of our formulation and solution of the
marginal problem (Section 5).

2. Sets of desirable gamble sets
2.1. Preliminaries. Consider an uncertain variable 𝑋,
taking values in a finite possibility space 𝒳. A gam-
ble is a real-valued function on 𝒳. A gamble 𝑓 com-
mits its owner to the following transaction: first, 𝑋’s
real outcome 𝑥 in 𝒳 is revealed, and then the owner
receives 𝑓(𝑥) units of utile on a predetermined utility
scale. This value 𝑓(𝑥)may be negative, so gambles can
be regarded as risky transactions.
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We denote the set of all gambles on 𝒳 by ℒ(𝒳), and
sometimes also simply by ℒ if it is unambiguous from
the context what the possibility space 𝒳 is. ℒ is an |𝒳|-
dimensional linear space under the pointwise addition
and scalarmultiplication of gambles.We collect the ‘posi-
tive’ gambles inℒ>0(𝒳) ∶= {𝑓 ∈ ℒ(𝒳)∶ 𝑓 > 0}, and the
‘non-positive’ ones in ℒ≤0(𝒳) ∶= {𝑓 ∈ ℒ(𝒳)∶ 𝑓 ≤ 0},
or ℒ>0 and ℒ≤0 when unambiguous.1

2.2. Sets of desirable gambles. An agent might have
beliefs about the uncertain variable 𝑋, which can lead
her to prefer some gambles over others. She might prefer
a gamble 𝑓 over the status quo 0, in which case we call 𝑓
desirable. The agent’s set of desirable gambles 𝐷 ⊆ ℒ
collects all the gambles that she finds desirable. They
have been introduced by Williams [36] and Seidenfeld
et al. [27], and studied extensively by Walley [33, 34],
De Cooman and Quaeghebeur [10], De Cooman and
Miranda [9] and Quaeghebeur [25], among others.

Definition 2.1 (Coherent set of desirable gambles). A
set of desirable gambles 𝐷 ⊆ ℒ is called coherent if:
D1. 0 ∉ 𝐷;
D2. ℒ>0 ⊆ 𝐷;
D3. if 𝑓, 𝑔 ∈ 𝐷 and (𝜆, 𝜇) > 0, then 𝜆𝑓 + 𝜇𝑔 ∈ 𝐷.
We collect all the coherent sets of desirable gambles
in 𝒟(𝒳) ⊆ 𝒫(ℒ), or 𝒟 for short, where 𝒫 denotes the
powerset of its argument.

We say that the set of desirable gambles 𝐷1 is at least
as informative (or committal, precise) as the set of de-
sirable gambles 𝐷2 when 𝐷2 ⊆ 𝐷1, simply because an
agent with 𝐷1 finds more gambles desirable. The par-
tially ordered set (𝒟, ⊆) is a complete meet-semilattice.
De Cooman [7] showed that such a structure is strong
enough to yield a closure operator

cl𝒟 ∶ 𝒫(ℒ)→ 𝒟 ∪ {ℒ}∶ 𝐴 ↦ cl𝒟(𝐴) ∶=
⋂

𝐴⊆𝐷∈𝒟 𝐷

that maps any partially specified set of desirable gam-
bles 𝐴 ⊆ ℒ that is consistent – has a coherent superset –
to its unique least informative coherent extension cl𝒟(𝐴).
The sets of desirable gambles that are not consistent are
mapped toℒ. We call cl𝒟(𝐴) the natural extension of the
assessment 𝐴. So, the natural extension is the unique set
of desirable gambles that is the consequence of finding
every gamble in 𝐴 desirable and taking into account the
rationality axioms D1–D3, but nothing else.
There is a useful characterisation of cl𝒟 in terms of the

positive linear hull operator ‘posi’, defined for all 𝐵 ⊆ ℒ
as follows

posi(𝐵) ∶=
{∑

𝑓∈𝐹 𝜆𝑓𝑓∶ 𝐹 ⊑ 𝐵, 𝜆 ∈ (ℝ𝐹)>0
}
,

where ⊑ denotes the finite subset relation.
1For all elements 𝑢 and 𝑣 of a finite vector space, we write 𝑢 ≤ 𝑣

if 𝑢(𝑧) ≤ 𝑣(𝑧) (or 𝑢𝑧 ≤ 𝑣𝑧) for all arguments (indices) 𝑧, and 𝑢 < 𝑣 if
𝑢 ≤ 𝑣 but 𝑢 ≠ 𝑣. These definitions are used in this paper for gambles,
but also for sequences of coefficients.

Theorem 2.1 ([10, Theorem 1]). Consider any assess-
ment 𝐴 ⊆ ℒ. Then 𝐴 is consistent if and only if
0 ∉ posi(ℒ>0 ∪ 𝐴). If this is the case, then cl𝒟(𝐴) =
posi(ℒ>0 ∪ 𝐴).

The smallest coherent set of desirable gambles – the
vacuous set of desirable gambles – can be obtained from
the empty assessment. We call it 𝐷v ∶= cl𝒟(∅) = ℒ>0.

2.3. Sets of desirable gamble sets. The agent might
have beliefs that allow her to state ‘gamble 𝑓 is desirable
or gamble 𝑔 is desirable’, but shemight not have sufficient
information to decide which of 𝑓 and 𝑔 are desirable. In
other words, she knows that the set {𝑓, 𝑔} contains a
desirable gamble, in which case we call {𝑓, 𝑔} a desirable
gamble set.
More generally, a gamble set on𝒳 is a finite set of gam-

bles on 𝒳. We denote the set of all gamble sets on 𝒳
by 𝒬(𝒳), or 𝒬 when unambiguous. A gamble set is de-
sirable when it contains at least one desirable gamble.
We collect an agent’s desirable gamble sets in her set of
desirable gamble sets (SoDGS) 𝐾 ⊆ 𝒬.
De Bock and De Cooman [12] gave a well-justified

definition and axiomatisation of coherent SoDGSes –
SoDGSes of rational agents.

Definition 2.2 (Coherent SoDGS). An SoDGS 𝐾 ⊆ 𝒬 is
called coherent if:
K0. ∅ ∉ 𝐾;
K1. 𝐹 ∈ 𝐾 ⇒ 𝐹 ⧵ {0} ∈ 𝐾;
K2. {𝑓} ∈ 𝐾 for all 𝑓 in ℒ>0;
K3. if 𝐹, 𝐺 ∈ 𝐾 and (𝜆𝑓,𝑔, 𝜇𝑓,𝑔) > 0 for every pair (𝑓, 𝑔)

in 𝐹 × 𝐺, then {𝜆𝑓,𝑔𝑓 + 𝜇𝑓,𝑔𝑔∶ 𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺} ∈ 𝐾;
K4. if 𝐹 ∈ 𝐾 and 𝐹 ⊆ 𝐺, then 𝐺 ∈ 𝐾.
We collect all the coherent SoDGSes in the collec-
tion𝒦(𝒳), or𝒦 when unambiguous.

Similarly aswe did for sets of desirable gambles, we say
that the SoDGS𝐾1 is at least as informative as the SoDGS
𝐾2 when 𝐾2 ⊆ 𝐾1, simply because an agent with 𝐾1
finds more gamble sets desirable. The partially ordered
set (𝒦, ⊆) is again a complete meet-semilattice, so it, too,
yields a closure operator

cl𝒦 ∶ 𝒫(𝒬)→ 𝒦 ∪ {𝒬}∶ 𝒜↦ cl𝒦(𝒜) ∶=
⋂

𝒜⊆𝐾∈𝒦 𝐾

that maps any partially specified SoDGS 𝒜 ⊆ 𝒬 that is
consistent – has a coherent superset – to its unique least
informative coherent extension cl𝒦(𝒜). We call cl𝒦(𝒜)
the natural extension of the assessment 𝒜. Here too, the
natural extension is the consequence of finding every
gamble set in𝒜 desirable and the rationality axioms K0–
K4, and nothing else.
De Bock and De Cooman [12] showed that there is

a useful characterisation of cl𝒦 in terms of the positive
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linear hull operator ‘posi’ lifted to all ℬ ⊆ 𝒬 as follows

Posi(ℬ) ∶= {
{∑

𝐹∈ℱ 𝜆
ℎ
𝐹ℎ𝐹 ∶ ℎ ∈ 𝐻

}
∶ ℱ ⊑ ℬ,

(
∀ℎ ∈ 𝐻 ∶=⨉

𝐹∈ℱ 𝐹
)
𝜆ℎ ∈ (ℝℱ)>0}.

We also use a version of ℒ>0(𝒳) lifted to gamble sets,
namely ℒs

>0(𝒳) ∶= {{𝑓}∶ 𝑓 ∈ ℒ>0(𝒳)}, or ℒs
>0 when

unambiguous, and use the transformation Rs∶ 𝒫(𝒬)→
𝒫(𝒬)∶ ℬ ↦ Rs(ℬ) ∶= {𝐹 ∈ 𝒬∶ (∃𝐺 ∈ ℬ)𝐺⧵ℒ≤0 ⊆ 𝐹},
which is the abbreviation of ‘Remove negative gambles
from gamble sets in its input and take supersets’.

Theorem 2.2 ([12, Theorem 10]). Consider any assess-
ment 𝒜 ⊆ 𝒬. Then 𝒜 is consistent if and only if ∅ ∉ 𝒜
and {0} ∉ Posi(ℒs

>0∪𝒜). If this is the case, then cl𝒦(𝒜) =
Rs(Posi(ℒs

>0 ∪𝒜)).
The smallest coherent SoDGS – the vacuous SoDGS –

is obtained from the empty assessment. We call it 𝐾v ∶=
cl𝒦(∅) = Rs(ℒs

>0) = {𝐹 ∈ 𝒬∶ (∃𝑓 ∈ ℒ>0)𝑓 ∈ 𝐹}.
If the agent has a set of desirable gambles 𝐷, then she

finds desirable all the gamble sets {𝑓} for 𝑓 in𝐷. In other
words, her SoDGS that corresponds to 𝐷 is the natural
extension of the assessment 𝒜 ∶= {{𝑓}∶ 𝑓 ∈ 𝐷}, which
is given by cl𝒦(𝒜). Whenever 𝐷 is coherent, it follows
from Van Camp and Miranda [32, Proposition 5] that
cl𝒦(𝒜) is coherent and equal to𝐾𝐷 ∶= {𝐹 ∈ 𝒬∶ 𝐹∩𝐷 ≠
∅}.
We use the notation 𝐾𝐷 for {𝐹 ∈ 𝒬∶ 𝐹 ∩ 𝐷 ≠ ∅} even

when 𝐷 is not coherent. De Bock and De Cooman [13,
Proposition 8] showed that 𝐾𝐷 is coherent if and only
if 𝐷 is. We call an SoDGS 𝐾 binary if there is a set of
desirable gambles 𝐷 such that 𝐾𝐷 = 𝐾, because 𝐾 is
then characterised by the preference order determined
by 𝐷, which is a binary order. The vacuous SoDGS 𝐾v is
binary, and 𝐷v = ℒ>0 is the set of desirable gambles that
determines it: 𝐾v = {𝐹 ∈ 𝒬∶ 𝐹 ∩ℒ>0 ≠ ∅} = 𝐾𝐷v .
Conversely, if the agent has an SoDGS 𝐾, then 𝐷𝐾 ∶=

{𝑓∶ {𝑓} ∈ 𝐾} is a set of desirable gambles for her. More-
over, De Bock and De Cooman [12, Lemma 13] showed
that 𝐷𝐾 is coherent whenever 𝐾 is.

2.4. Choice functions. An SoDGS can be equivalently
represented by a choice function, which is a map

𝐶∶ 𝒬→ 𝒬∶ 𝐹 ↦ 𝐶(𝐹) ⊆ 𝐹.

The idea is that 𝐶 identifies the non-rejected (or choice-
worthy) gambles 𝐶(𝐹) in any gamble set 𝐹, which rep-
resents a finite decision problem. Choice functions are
intimately related to the fundamental problem of deci-
sion theory: how to make decisions from a set of avail-
able options. Von Neumann and Morgenstern [24] in-
troduced rationality axioms for choice functions based
on binary comparisons, which was generalised to more
general choice functions by Arrow [1] and Rubin [26],

among others. Kadane et al. [18] and Seidenfeld et al.
[29] have introduced imprecise-probabilistic choice func-
tions, which have the characteristic feature that an agent
can be indecisive between two gambles 𝑓 and 𝑔, without
being necessarily indifferent between 𝑓 and 𝑔.
A choice function 𝐶 determines an SoDGS as follows.

When a gamble set 𝐹 satisfies 0 ∉ 𝐶({0} ∪ 𝐹) – in other
words, when the status quo is rejected from {0}∪𝐹 – then
we call 𝐹 desirable, and collect all the desirable gamble
sets in 𝐾𝐶 ∶= {𝐹 ∈ 𝒬∶ 0 ∉ 𝐶({0} ∪ 𝐹)}. The idea is that,
if 0 is not choiceworthy in {0} ∪ 𝐹, then 𝐹 must contain
a gamble preferred to 0.
The other way around, an SoDGS 𝐾 determines a

choice function as follows. For any gamble set 𝐹, let
𝐶𝐾(𝐹) ∶= {𝑓 ∈ 𝐹 ∶ {𝑔 − 𝑓∶ 𝑔 ∈ 𝐹} ∉ 𝐾}, which defines
the corresponding choice function.
Choice function have rationality axioms similar to Ax-

ioms K1–K4 [12, Definition 4]. They can also be ordered:
If 𝐶1(𝐹) ⊆ 𝐶2(𝐹) for all 𝐹 in 𝒬, then we call 𝐶1 more
informative than 𝐶2.
Under very mild conditions, much weaker than co-

herence,2 these two constructions commute (𝐾𝐶𝐾 = 𝐾
and 𝐶𝐾𝐶 = 𝐶) and preserve the order and coherence,
so choice functions and SoDGSes are equivalent repre-
sentations of the same information. In this paper, we
will for notational reasons stick to SoDGSes, but due to
this equivalence, all the results can be translated to choice
functions.

3. Finite representation
Coherent SoDGSes have an interesting representation

in terms of collections of sets of desirable gambles.

Theorem 3.1 (Representation [13, Theorem 9]). For any
SoDGS 𝐾, the following two expressions are equivalent:
(i) 𝐾 is coherent;
(ii) there is a non-empty set𝒟 ⊆ 𝒟 of coherent sets of de-

sirable gambles such that 𝐾 = 𝐾𝒟 ∶=⋂{𝐾𝐷 ∶ 𝐷 ∈
𝒟}, in which case we say that𝒟 represents 𝐾.

Moreover, 𝐾’s (unique) largest representing set is𝒟𝐾 ∶=
{𝐷 ∈ 𝒟∶ 𝐾 ⊆ 𝐾𝐷 }.

Note that 𝒟𝐾 is an upset: if 𝐷1 ∈ 𝒟𝐾 and 𝐷1 ⊆ 𝐷2,
then 𝐷2 ∈ 𝒟𝐾 , for any 𝐷1 and 𝐷2 in𝒟. In other words,
𝒟𝐾 = ↑𝒟𝐾 , where ↑𝒟 ∶= {𝐷 ∈ 𝒟∶ (∃𝐷′ ∈ 𝒟)𝐷′ ⊆ 𝐷}
is the smallest upset containing𝒟, for any𝒟 ⊆ 𝒟.
Theorem 3.1 also allows for a simpler expression for

the natural extension:

Theorem 3.2 (De Bock & De Cooman, private commu-
nication). An assessment 𝒜 ⊆ 𝒬 is consistent if and only
if there is some 𝐷 in 𝒟 such that 𝒜 ⊆ 𝐾𝐷 . In that case
cl𝒦(𝒜) =

⋂{
𝐾𝐷 ∶ 𝐷 ∈ 𝒟 and𝒜 ⊆ 𝐾𝐷

}
.

2The condition for SoDGSes 𝐾 is: 𝐹 ∈ 𝐾 ⇔ {0} ∪ 𝐹 ∈ 𝐾, for all 𝐹
in 𝒬. The condition for choice functions 𝐶 is: 𝐶(𝐹 + {𝑓}) = 𝐶(𝐹) + {𝑓}
for all 𝐹 in 𝒬 and 𝑓 in ℒ.
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The representation of coherent 𝐾 in terms of𝒟𝐾 ⊆ 𝒟
in Theorem 3.1 has been crucial for deriving several the-
oretical properties of SoDGSes, among which the irrele-
vant natural extension [32], independent natural exten-
sion [31] and marginal extension [22].
Despite the success of the representation of Theo-

rem 3.1, we here focus our attention, for technical rea-
sons,3 on a special subclass of coherent SoDGSes: the
ones that admit a finite representation.

Definition 3.1 (Finite representation). Consider a co-
herent SoDGS𝐾. We say that𝐾 has a finite representation
if there is a finite subset𝒟 ⊆ 𝒟 that represents 𝐾.

An interesting characterisation of an SoDGS 𝐾 with a
finite representation involves the existence of minimal
elements in the poset (𝒟𝐾 , ⊆) of 𝐾’s largest represen-
tation. In order to discuss it, for every 𝒟 ⊆ 𝒟, define
min𝒟 ∶= {𝐷 ∈ 𝒟∶ (∀𝐷′ ∈ 𝒟)(𝐷′ ⊆ 𝐷 ⇒ 𝐷′ = 𝐷)} as
𝒟’s minimal elements.

Theorem 3.3. For any coherent SoDGS 𝐾, we have that
min𝒟𝐾 ≠ ∅ so the poset (𝒟𝐾 , ⊆) has minimal ele-
ments. Moreover, 𝒟𝐾 = ↑min𝒟𝐾 . As a consequence
𝐾 = 𝐾min𝒟𝐾 somin𝒟𝐾 represents 𝐾.

Proof. We will first show thatmin𝒟𝐾 ≠ ∅. To this end,
consider any non-empty chain 𝒞 ⊆ 𝒟𝐾 , meaning that
𝒞 is totally ordered by ⊆. By Zorn’s Lemma it suffices to
show that 𝒞 has a lower bound in𝒟𝐾 . We will show that
the lower bound𝐷⋆ ∶=

⋂𝒞 of𝒞 belongs to𝒟𝐾 . In order
to do so, note already that𝐷⋆ is a coherent set of desirable
gambles because every element of 𝒞 is coherent. To show
that 𝐷⋆ belongs to𝒟𝐾 – or equivalently, that 𝐾 ⊆ 𝐾𝐷⋆
– consider any 𝐹 in 𝒬 such that 𝐹 ∉ 𝐾𝐷⋆ , implying that
𝐹∩𝐷⋆ = ∅, andwewill show that𝐹 ∉ 𝐾. From𝐹∩𝐷⋆ =
∅, it follows that𝐹 ⊆ 𝐷𝑐

⋆ =
⋃

𝐷∈𝒞 𝐷
𝑐, so for every gamble

𝑓 in𝐹 there is some set of desirable gambles𝐷𝑓 in𝒞 such
that 𝑓 ∉ 𝐷𝑓 . Defining 𝐷⋆ ∶= ⋂

𝑓∈𝐹 𝐷𝑓, we infer that
𝐹 ∩ 𝐷⋆ = ∅, whence 𝐹 ∉ 𝐾𝐷⋆ . But since 𝐹 is finite
and 𝒞 is a chain, 𝐷⋆ =⋂

𝑓∈𝐹 𝐷𝑓 simply is the smallest
element of the finite {𝐷𝑓 ∶ 𝑓 ∈ 𝐹} ⊆ 𝒞, which therefore
belongs to 𝒞 ⊆ 𝒟𝐾 . This implies that 𝐹 ∉ 𝐾𝒟𝐾 = 𝐾,
where the equality follows from Theorem 3.1. So 𝒞 has
a lower bound 𝐷⋆ that belongs to𝒟𝐾 . Therefore, since
the choice of 𝒞 ⊆ 𝒟𝐾 was arbitrary, using Zorn’s Lemma
we know thatmin𝒟𝐾 is non-empty.
We now use this to show that 𝒟𝐾 = ↑min𝒟𝐾 . Be-

cause min𝒟𝐾 ⊆ 𝒟𝐾 , and the fact that 𝒟𝐾 is an upset,
we already know that𝒟𝐾 ⊇ ↑min𝒟𝐾 , so let us prove the
converse set inclusion𝒟𝐾 ⊆ ↑min𝒟𝐾 . To this end, con-
sider any𝐷⋆ in𝒟𝐾 , and assume ex absurdo that𝐷′ ⊈ 𝐷⋆

for every 𝐷′ inmin𝒟𝐾 . This would imply that the non-
empty ↓𝐷⋆ ∶= {𝐷 ∈ 𝒟𝐾 ∶ 𝐷 ⊆ 𝐷⋆} has no minimal

3More specifically, our proof of Proposition 4.2 depends crucially
on this assumption, on which Theorem 5.1 builds.

element. Indeed, if ↓𝐷⋆ had aminimal element𝐷⋆, then
𝐷⋆ would also be a minimal element of𝒟𝐾 , because oth-
erwise there would be an element 𝐷′ ⊂ 𝐷⋆ in𝒟𝐾 which
would then also belong to ↓𝐷⋆.
We will apply Zorn’s Lemma to the poset (↓𝐷⋆, ⊆), so

consider any non-empty chain 𝒞 ⊆ ↓𝐷⋆. Then 𝐷⋆ ∶=⋂𝒞 is a coherent set of desirable gambles, and by a sim-
ilar argument as above we find that 𝐾 ⊆ 𝐾𝐷⋆ . This im-
plies that 𝐷⋆ belongs to ↓𝐷⋆, so the chain 𝒞 has a lower
bound in ↓𝐷⋆. But since the choice of the chain𝒞 ⊆ ↓𝐷⋆

was arbitrary, Zorn’s Lemma tells us that then ↓𝐷⋆ has at
least one minimal element, contradicting that ↓𝐷⋆ has
no minimal elements. We conclude that it is impossible
that 𝐷′ ⊈ 𝐷⋆ for every 𝐷′ inmin𝒟𝐾 , and hence indeed
𝐷⋆ ∈ ↑min𝒟𝐾 .
We now turn to the last statement, that 𝐾 = 𝐾min𝒟𝐾 .

Using Theorem 3.1 we know that 𝐾 = 𝐾𝒟𝐾 , and since
min𝒟𝐾 ⊆ 𝒟𝐾 we know that 𝐾 = 𝐾𝒟𝐾 ⊆ 𝐾min𝒟𝐾 , so
it suffices to show the converse set inclusion 𝐾𝒟𝐾 ⊇
𝐾min𝒟𝐾 . To this end, consider any𝐹 in𝐾min𝒟𝐾 , meaning
that 𝐹∩𝐷 ≠ ∅ for every𝐷 inmin𝒟𝐾 , and hence also for
every 𝐷 in ↑min𝒟𝐾 . Since we have shown above that
↑min𝒟𝐾 = 𝒟𝐾 , we infer that 𝐹 ∩ 𝐷 ≠ ∅ for every 𝐷 in
𝒟𝐾 , whence indeed 𝐹 ∈ 𝐾𝒟𝐾 .

Theorem 3.3 tells us that every coherent SoDGS 𝐾
is represented by an antichain – a set with the prop-
erty that no two distinct elements are ordered by ⊆ –
namelymin𝒟𝐾 , but there might be several different an-
tichains that represent the same 𝐾. However, we will
establish in Proposition 3.2 later on that any coherent
SoDGS with a finite representation has a unique finite
antichain that represents it.

Lemma 3.1. Consider any coherent SoDGS𝐾 with a finite
representation 𝒟. Then min𝒟 is also a representation
of 𝐾.

Proof. Since (𝒟, ⊆) is a finite poset, its set of minimal
elementsmin𝒟 is non-empty, and every 𝐷 in𝒟 domi-
nates – is a superset of – a minimal element in min𝒟.
Consider any gamble set 𝐹 and infer that

𝐹 ∈ 𝐾 ⇔ (∀𝐷 ∈ 𝒟)𝐹 ∩ 𝐷 ≠ ∅
⇔ (∀𝐷 ∈ min𝒟)𝐹 ∩ 𝐷 ≠ ∅⇔ 𝐹 ∈ 𝐾min𝒟,

where the first equivalence follows since𝒟 represents 𝐾,
and the second equivalence since every element of𝒟 is
a superset of an element ofmin𝒟. Since the choice of 𝐹
was arbitrary, this implies that 𝐾 = 𝐾min𝒟, and hence,
indeed,min𝒟 represents 𝐾.

Proposition 3.1. Consider any coherent SoDGS 𝐾. Then
𝐾 has a finite representation if and only if min𝒟𝐾 is finite.

Proof. Sufficiency follows at once from the fact that
min𝒟𝐾 is a representation of 𝐾, established in Theo-
rem 3.3.
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For necessity, assume that 𝐾 has a finite represen-
tation 𝒟. Then by Lemma 3.1 min𝒟, which is a sub-
set of 𝒟 and hence finite, also represents 𝐾. We show
thatmin𝒟𝐾 ⊆ min𝒟, ensuring that the former is finite.
To do so, consider any 𝐷 in 𝒟 such that 𝐷 ∉ min𝒟,
and we will show that 𝐷 ∉ min𝒟𝐾 . If 𝐷 ⊇ 𝐷′ for some
𝐷′ ∈ min𝒟 ⊆ 𝒟𝐾 , then 𝐷 ≠ 𝐷′ and hence 𝐷 is not a
minimal element of the poset (𝒟𝐾 , ⊆), so 𝐷 ∉ min𝒟𝐾
and we are done. So assume (∀𝐷′ ∈ min𝒟)𝐷′ ⊈ 𝐷, so
(∀𝐷′ ∈ min𝒟)(∃𝑓𝐷′ ∈ 𝐷′)𝑓𝐷′ ∉ 𝐷. Collect all these
𝑓𝐷′ ∈ 𝐷′ ⧵ 𝐷 in the set 𝐹 ∶= {𝑓𝐷′ ∶ 𝐷′ ∈ min𝒟} which
is finite and therefore a valid gamble set. Then𝐹∩𝐷′ ≠ ∅
for every 𝐷′ ∈ min𝒟, so 𝐹 ∈ 𝐾 because min𝒟 repre-
sents 𝐾, as established earlier. But 𝐹 ∩𝐷 = ∅, so 𝐹 ∉ 𝐾𝐷
and hence 𝐾 ⊈ 𝐾𝐷 , whence 𝐷 ∉ 𝒟𝐾 , and therefore in
particular 𝐷 ∉ min𝒟𝐾 , indeed.

Example 3.1. SoDGSes with a finite representation are
still fairly general. For instance, consider any set of prob-
ability mass functionsℳ. This setℳ might for instance
correspond to a non-additive measure, a belief function,
or a lower probability. Denoting the 𝑝-expectation by 𝐸𝑝,
then the coherent SoDGS based onℳ using Sen–Walley
maximality [30, 33] is

𝐾m
ℳ ∶= 𝐾v ∪ {𝐹 ∈ 𝒬∶ (∃𝑓 ∈ 𝐹)(∀𝑝 ∈ℳ)𝐸𝑝(𝑓) > 0},

which is a binary SoDGS, and hence has a finite – single-
ton – representation.
Moreover, the coherent SoDGS based onℳ using E-

admissibility [18, 20, 29] is

𝐾E
ℳ ∶= 𝐾v ∪ {𝐹 ∈ 𝒬∶ (∀𝑝 ∈ℳ)(∃𝑓 ∈ 𝐹)𝐸𝑝(𝑓) > 0},

which is represented by {𝐷𝑝 ∶ 𝑝 ∈ℳ} [see 31, Lemma 5],
where 𝐷𝑝 ∶= {𝑓 ∈ ℒ∶ 𝐸𝑝(𝑓) > 0} ∪ℒ>0 is the smallest
coherent set of desirable gambles that contains all the
gambles with positive 𝑝-expectation. So ifℳ is finite,
then 𝐾𝐸

ℳ has a finite representation.
More generally, any Archimedean SoDGS based on a

finite number of positive superlinear bounded real func-
tionals [15] has a finite representation.

The main importance, for our purpose, of SoDGSes
with a finite representation lies in the following property.

Proposition 3.2. Consider two coherent SoDGSes 𝐾1
and 𝐾2 with finite representation𝒟1 and𝒟2, respectively.
Then 𝐾1 = 𝐾2 if and only if min𝒟1 = min𝒟2.

Proof. For necessity, assume thatmin𝒟1 ≠ min𝒟2, and
we will show that 𝐾1 ≠ 𝐾2. That min𝒟1 ≠ min𝒟2
implies that min𝒟1 ⊈ min𝒟2 or min𝒟1 ⊉ min𝒟2 –
we will assume that min𝒟1 ⊈ min𝒟2; the other case
will follow by a very similar argument. This implies that
there is some 𝐷1 inmin𝒟1 such that 𝐷1 ≠ 𝐷2 for all 𝐷2
inmin𝒟2.

If there is some 𝐷2 in min𝒟2 such that 𝐷2 ⊆ 𝐷1,
then also 𝐷2 ⊂ 𝐷1, and hence also 𝐷′

1 ⊈ 𝐷2 for all
𝐷′
1 ∈ min𝒟1 since min𝒟1 is an antichain. So for ev-

ery𝐷′
1 inmin𝒟1 there is a gamble 𝑓𝐷′1 in𝐷

′
1⧵𝐷2. Collect

all these gambles in 𝐹 ∶= {𝑓𝐷′1 ∶ 𝐷
′
1 ∈ min𝒟1} which

is finite and hence a valid gamble set. Then 𝐹 ∩ 𝐷′
1 ≠ ∅

for every 𝐷′
1 inmin𝒟1, so 𝐹 ∈ 𝐾1 becausemin𝒟1 rep-

resents 𝐾1 by Lemma 3.1. Also, 𝐹 ∩ 𝐷2 = ∅, so 𝐹 ∉ 𝐾2
because 𝒟2 represents 𝐾2, and hence 𝐾1 ≠ 𝐾2 and we
are done.
So assume that 𝐷2 ⊈ 𝐷1 for all 𝐷2 in𝒟2. Then for ev-

ery𝐷2 inmin𝒟2 there is a gamble 𝑓𝐷2 in𝐷2⧵𝐷1. Collect
all these gambles in 𝐹 ∶= {𝑓𝐷2 ∶ 𝐷2 ∈ min𝒟2} which
is finite and hence a valid gamble set. Then 𝐹 ∩ 𝐷2 ≠ ∅
for every 𝐷2 inmin𝒟2, so 𝐹 ∈ 𝐾2 becausemin𝒟2 rep-
resents 𝐾2 by Lemma 3.1. Also, 𝐹 ∩ 𝐷1 = ∅, so 𝐹 ∉ 𝐾1
because𝒟1 represents 𝐾1 and hence, indeed, 𝐾1 ≠ 𝐾2.
For sufficiency, assume that min𝒟1 = min𝒟2.

Since𝒟1 (finitely) represents 𝐾1 and𝒟2 (finitely) repre-
sents 𝐾2, use Lemma 3.1 to infer that alsomin𝒟1 repre-
sents 𝐾1, and, similarly,min𝒟2 represents 𝐾2. But since
min𝒟1 = min𝒟2 we find that, indeed, 𝐾1 = 𝐾2.

Proposition 3.2 implies that the coherent SoDGSes
with finite representation are in a one-to-one relation
with the finite antichains in𝒟.
Lemma 3.1, and therefore also Proposition 3.2, fail

to hold for infinite representations𝒟, as the following
example shows.

Example 3.2. Consider the vacuous SoDGS 𝐾v . We will
show that each of the three sets 𝒟1 ∶= 𝒟, 𝒟2 ∶= {𝐷v}
and 𝒟3 ∶= 𝒟 ⧵ {𝐷v} represents 𝐾v . To see this, ob-
serve that𝒟2 represents𝐾v by definition, and then since
𝒟1 = ↑𝒟2, also𝒟1 represents 𝐾v . To show that𝒟3 also
represents 𝐾v , since 𝒟3 ⊆ 𝒟1 it suffices to show that
𝐾𝒟3 ⊆ 𝐾v . To this end, consider any 𝐹 ∉ 𝐾v , and we
will infer that 𝐹 ∉ 𝐾𝐷 for some 𝐷 in 𝒟3. That 𝐹 ∉ 𝐾v
implies 𝐹 ∩ℒ>0 = ∅. If 𝐹 ⊆ ℒ≤0 then 𝐹 cannot intersect
any coherent set of desirable gambles 𝐷: if it did, then
there is some 𝑓 ∈ 𝐷 such that 𝑓 ≤ 0. By Axiom D1,
𝑓 ≠ 0, so −𝑓 > 0 and therefore −𝑓 ∈ 𝐷 by Axiom D2,
whence 0 = 𝑓 − 𝑓 ∈ 𝐷 by Axiom D3, contradicting
Axiom D1. So 𝐹 ∉ 𝐾𝐷 for any coherent 𝐷 and we are
done, so assume that 𝐹 contains at least one gamble in
ℒ ⧵ (ℒ>0 ∪ℒ≤0). The idea is now to consider the gamble
(or one of them) 𝑓 ∈ 𝐹 whose ray is closest toℒ>0, which
exists since 𝐹 is finite. Then 𝑓(𝑥) < 0 for some 𝑥, and
by letting 𝜖 ∶= 𝑓(𝑥)∕2 we find that 𝑓⋆ ∶= 𝑓 + 𝜖 ∉ ℒ>0.
𝑓⋆ is contained on a ray that is (strictly) closer to ℒ>0
than the ray through any gamble in 𝐹. Consider now
𝐷 ∶= cl𝒟({𝑓⋆}) ∈ 𝒟3, whose rays all are closer to ℒ>0
than the rays of gambles in𝐹. This implies that𝐹∩𝐷 = ∅,
whence, indeed, 𝐹 ∉ 𝐾𝐷 .
So we see that the representation of 𝐾v is not unique:

in this case, as 𝒟2 = 𝒟1 ⧵ 𝒟3, there is even a parti-
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tion {𝒟2,𝒟3} of representations. The representation𝒟3
does not have minimal elements, demonstrating that
the requirement that 𝐾 has a finite representation in
Lemma 3.1 is not superfluous.
Note that 𝐾v has a finite representation, so Proposi-

tion 3.2 predicts that it has a unique finite antichain that
represents it, which in this case is {𝐷v}.

4. Multivariate sets of desirable
gamble sets

This section introduces the notation and concepts nec-
essary for multivariate SoDGSes. It is heavily based on
the work of Van Camp et al. [31, Section 5]. Along the
way, we add some specialised results for SoDGSes that
admit a finite representation, needed for Theorem 5.1.

4.1. Preliminaries. Consider 𝑛 ∈ ℕ uncertain vari-
ables 𝑋1, . . . , 𝑋𝑛, each assuming values in the finite pos-
sibility spaces 𝒳1, . . . , 𝒳𝑛, respectively. For brevity, we
will use the notation 𝑁 ∶= {1,… , 𝑛} for the global in-
dex set. To express beliefs – sets of desirable gambles
or SoDGSes – about the uncertain variables 𝑋1, . . . , 𝑋𝑛
together, we consider gambles on the Cartesian prod-
uct 𝒳 ∶= ⨉𝑛

𝑘=1𝒳𝑘, which belong to the
∏𝑛

𝑘=1|𝒳𝑘|-
dimensional linear space ℒ

(
𝒳
)
.

For any subset 𝐼 ⊆ 𝑁 of indices, we let 𝑋𝐼 be the
tuple of uncertain variables that assumes values in𝒳𝐼 ∶=⨉

𝑘∈𝐼 𝒳𝑘. If 𝐼 = ∅, then 𝒳∅ contains only one element:
the emptymap. In this case, there is no uncertainty about
the variable 𝑋∅.
For any subset 𝐼 ⊆ 𝑁, any gamble 𝑓 on 𝒳 and any

𝑥𝐼 ∈ 𝒳𝐼 , we can regard the partial map 𝑓(𝑥𝐼 ,⋅) as a
gamble on 𝒳𝐼𝑐 , where we let 𝐼𝑐 ∶= 𝑁 ⧵ 𝐼 be the indices
outside 𝐼. Conversely, it will be useful to relate a gamble𝑓
on 𝒳𝐼 to a gamble on 𝒳.

Definition 4.1 (Cylindrical extension). Given two dis-
joint subsets 𝐼 and 𝐽 of 𝑁 and any gamble 𝑓 on 𝒳𝐼 ,
we let its cylindrical extension 𝑓𝐽 to 𝒳𝐼∪𝐽 be defined
by 𝑓𝐽(𝑥𝐼 , 𝑥𝐽) ∶= 𝑓(𝑥𝐼) for all 𝑥𝐼 in 𝒳𝐼 and 𝑥𝐽 in 𝒳𝐽 .
Similarly, given any set of gambles 𝐹 ⊆ ℒ(𝒳𝐼), we let
its cylindrical extension 𝐹𝐽 ⊆ ℒ(𝒳𝐼∪𝐽) be defined as
𝐹𝐽 ∶= {𝑓𝐽 ∶ 𝑓 ∈ 𝐹}.

Formally, 𝑓 belongs to ℒ(𝒳𝐼) while 𝑓𝐽 belongs
to ℒ(𝒳𝐼∪𝐽). However, for any 𝑥𝐼 in 𝒳𝐼 , the partial
map 𝑓𝐽(𝑥𝐼 ,⋅) ∈ ℒ(𝒳𝐽) is actually constant, so 𝑓𝐽 de-
pends only on the value of 𝑋𝐼 . So we see that 𝑓 and 𝑓𝐽
are indistinguishable from a behavioural point of view.

Remark 4.1.We do not notationally distinguish be-
tween 𝑓 and 𝑓𝐽 , and identify a gamble 𝑓 on 𝒳𝐼 with
its cylindrical extension 𝑓𝐽 [9, 31].
Using this convention allows us to regard ℒ(𝒳𝐼) as

a subset of ℒ(𝒳𝐼∪𝐽) and, similarly, 𝒬(𝒳𝐼) as a subset of
𝒬(𝒳𝐼∪𝐽).

4.2. Marginalisation. Assume that we have an
SoDGS 𝐾 ⊆ 𝒬(𝒳) that models the agent’s beliefs about
the uncertain variable 𝑋𝑁 . We are interested in the in-
formation about 𝑋𝑆 present in 𝐾, where 𝑆 ⊆ 𝑁. This
information can be obtained by collecting the gamble
sets that belong to 𝐾 but depend only on 𝑋𝑆 .

Definition 4.2 (Marginalisation [32]). For any
SoDGS 𝐾 ⊆ 𝒬(𝒳) and any 𝑆 ⊆ 𝑁, its 𝑆-marginal
Marg𝑆 𝐾 ⊆ 𝒬(𝒳𝑆) is defined as

Marg𝑆 𝐾 ∶= 𝐾 ∩ 𝒬(𝒳𝑆).

Note that marginalisation preserves the order: if 𝐾1 ⊆
𝐾2 then Marg𝑆 𝐾1 ⊆ Marg𝑆 𝐾2 [32, Section 4.2]. This
definition of marginalisation generalises the one for sets
of desirable gambles, in thatMarg𝑆 𝐾𝐷 = 𝐾marg𝑆 𝐷 [32,
Proposition 10], where marg𝑆 𝐷 ∶= 𝐷 ∩ ℒ(𝒳𝑆) for all
𝐷 ⊆ ℒ(𝒳), as defined by De Cooman andMiranda [9]. It
will be convenient to lift the operatormarg𝑆 on 𝒫(ℒ(𝒳))
to a version on 𝒫(𝒫(ℒ(𝒳))), defined by marg𝑆 𝒟 ∶=
{marg𝑆 𝐷 ∶ 𝐷 ∈ 𝒟} for every𝒟 ⊆ 𝒫(ℒ(𝒳)).

Proposition 4.1 ([31, Proposition 11]). Consider any co-
herent SoDGS 𝐾, any representation𝒟 of it, and any 𝑆 ⊆
𝑁. ThenMarg𝑆 𝐾 is coherent. Moreover,Marg𝑆 𝐾 is rep-
resented bymarg𝑆 𝒟, meaning thatMarg𝑆 𝐾 = 𝐾marg𝑆 𝒟.

Theorem 3.1 and Proposition 4.1 imply thatmarg𝑆 𝒟𝐾
is a representation of Marg𝑆 𝐾, but it does not imply
that marg𝑆 𝒟𝐾 is equal to the unique largest represen-
tation 𝒟Marg𝑆 𝐾 of Marg𝑆 𝐾. However, if 𝐾 has a finite
representation then this turns out to be the case, which
will be a useful property further on. This is what we set
out to do for the rest of this section.

Lemma 4.1. Consider any 𝑆 ⊆ 𝑁, any coherent set of
desirable gambles𝐷 ⊆ ℒ(𝒳) and any coherent set of desir-
able gambles𝐷𝑆 ⊆ ℒ(𝒳𝑆) such thatmarg𝑆 𝐷 ⊆ 𝐷𝑆 . Then
𝐷⋆ ∶= posi(𝐷 ∪𝐷𝑆) is a coherent set of desirable gambles,
that marginalises to𝐷𝑆 , in the sense thatmarg𝑆 𝐷⋆ = 𝐷𝑆 .

Proof. For the first statement, it suffices to show that
0 ∉ posi(𝐷 ∪ 𝐷𝑆), taking into account Theorem 2.1 and
the fact thatℒ>0(𝒳) ⊆ 𝐷. To this end, assume ex absurdo
that 0 ∈ posi(𝐷 ∪ 𝐷𝑆), so we would find 𝑓 in 𝐷 and
𝑔 in 𝐷𝑆 such that 𝑓 + 𝑔 = 0, taking into account the
coherence of 𝐷 and 𝐷𝑆 . But then 𝑓 = −𝑔, and hence 𝑓
would belong to ℒ(𝒳𝑆), since 𝑔 belongs to ℒ(𝒳𝑆). So we
would find that 𝑓 ∈ 𝐷 ∩ℒ(𝒳𝑆) = marg𝑆 𝐷, and hence,
since marg𝑆 𝐷 ⊆ 𝐷𝑆 , also that −𝑔 = 𝑓 ∈ 𝐷𝑆 . But also
𝑔 ∈ 𝐷𝑆 , contradicting𝐷𝑆 ’s coherence: AxiomD3 implies
that 0 = 𝑔 − 𝑔 ∈ 𝐷𝑆 , which contradicts Axiom D1.
For the second statement, note that 𝐷𝑆 ⊆ 𝐷⋆ by con-

struction, whence 𝐷𝑆 ⊆ marg𝑆 𝐷⋆, so it suffices to show
that marg𝑆 𝐷⋆ ⊆ 𝐷𝑆 . To this end, consider any 𝑓 in
marg𝑆 𝐷⋆, so that 𝑓 = 𝑔 + 𝑔𝑆 for some 𝑔 ∈ 𝐷 ∪ {0} and
𝑔𝑆 ∈ 𝐷𝑆 ∪ {0}, taking the coherence of 𝐷 and 𝐷𝑆 into

6



Submitted to the 14th Symposium on Imprecise Probabilities: Theories and Applications (ISIPTA 2025)

account. Since both 𝑓 and 𝑔𝑆 belong toℒ(𝒳𝑆), so does 𝑔,
and hence 𝑔 ∈ marg𝑆 𝐷 ∪ {0} ⊆ 𝐷𝑆 ∪ {0}. So we find that
𝑓 = 𝑔+𝑔𝑆 for some 𝑔 and 𝑔𝑆 in𝐷𝑆 ∪{0}, so by coherence
[more specifically, AxiomD3] we infer that 𝑓 ∈ 𝐷𝑆 ∪ {0},
and, taking the coherence of 𝐷⋆ into account, which we
have established above, even that 𝑓 ∈ 𝐷𝑆 , indeed.

Lemma 4.2. Consider any coherent SoDGS 𝐾 ⊆ 𝒬(𝒳),
any𝑆 ⊆ 𝑁, andany coherent set of desirable gambles𝐷𝑆 ⊆
ℒ(𝒳𝑆). Then𝐷𝑆 ∈ marg𝑆 𝒟𝐾 ⇔ (∃𝐷 ∈ 𝒟𝐾)marg𝑆 𝐷 ⊆
𝐷𝑆 .

Proof. For necessity, assume that 𝐷𝑆 ∈ marg𝑆 𝒟𝐾 ,
implying that marg𝑆 𝐷 = 𝐷𝑆 – and hence indeed
marg𝑆 𝐷 ⊆ 𝐷𝑆 – for some 𝐷 ∈ 𝒟𝐾 .
For sufficiency, assume thatmarg𝑆 𝐷 ⊆ 𝐷𝑆 for some

𝐷 ∈ 𝒟𝐾 , and let 𝐷⋆ ∶= posi(𝐷 ∪ 𝐷𝑆). Then Lemma 4.1
tells us that𝐷⋆ is coherent andmarginalises to𝐷𝑆 . More-
over, 𝐷⋆ ⊇ 𝐷 by construction, so 𝐷⋆ also belongs to𝒟𝐾 .
So we have found 𝐷⋆ in𝒟𝐾 such thatmarg𝑆 𝐷⋆ = 𝐷𝑆 ,
whence, indeed, 𝐷𝑆 ∈ marg𝑆 𝒟𝐾 .

Proposition 4.2. Consider any coherent SoDGS 𝐾 ⊆
𝒬(𝒳) that has a finite representation, and any 𝑆 ⊆ 𝑁.
Thenmarg𝑆 𝒟𝐾 = 𝒟Marg𝑆 𝐾 .

Proof. Proposition 4.1 tells us that Marg𝑆 𝐾 is repre-
sented bymarg𝑆 𝒟𝐾 , which then is necessarily a subset
of𝒟Marg𝑆 𝐾 by Theorem 3.1. It therefore suffices to show
that𝒟Marg𝑆 𝐾 ⊆ marg𝑆 𝒟𝐾 . To this end, we consider any
𝐷𝑆 in𝒟(𝒳𝑆) such that 𝐷𝑆 ∉ marg𝑆 𝒟𝐾 , and will show
that then 𝐷𝑆 ∉ 𝒟Marg𝑆 𝐾 . Use Lemma 4.2 to infer that
marg𝑆 𝐷 ⊈ 𝐷𝑆 for all 𝐷 in𝒟𝐾 , and therefore in particu-
lar (∀𝐷 ∈ 𝒟)marg𝑆 𝐷 ⊈ 𝐷𝑆 , where we let𝒟 ⊆ 𝒟𝐾 be a
finite representation of 𝐾. This implies that, for every 𝐷
in 𝒟, there is some 𝑓𝐷 ∈ marg𝑆 𝐷 such that 𝑓𝐷 ∉ 𝐷𝑆 .
Collect all these gambles 𝑓𝐷 in 𝐹 ∶= {𝑓𝐷 ∶ 𝐷 ∈ 𝒟},
which is finite because𝒟 is, and therefore a valid gam-
ble set on 𝒳𝑆 . Then 𝑓𝐷 ∈ 𝐷 – and therefore 𝐹 ∩ 𝐷 ≠ ∅
– for every 𝐷 in𝒟, so 𝐹 ∈ 𝐾𝒟 = 𝐾, where we took into
account that𝒟 is a representation of 𝐾. Moreover, since
𝐹 ∈ 𝒬(𝒳𝑆), we find that 𝐹 ∈ 𝐾 ∩ 𝒬(𝒳𝑆) = Marg𝑆 𝐾.
Since 𝑓𝐷 ∉ 𝐷𝑆 for every 𝐷 in 𝒟, we find also that
𝐹 ∩ 𝐷𝑆 = ∅, so 𝐹 ∉ 𝐾𝐷𝑆 and thereforeMarg𝑆 𝐾 ⊈ 𝐾𝐷𝑆 ,
whence, indeed, 𝐷𝑆 ∉ 𝒟Marg𝑆 𝐾 .

5. The marginal problem
Let us now turn to the main topic of this paper: the

marginal problem. Suppose that we are given 𝑚 ∈ ℕ
coherent SoDGSes 𝐾𝓁 ⊆ 𝒬(𝒳𝑆𝓁) for some non-empty
index sets 𝑆𝓁 ⊆ 𝑁, where these index sets may overlap.
The marginal problem is this:

“When is there a joint SoDGS 𝐾 ⊆ 𝒬(𝒳) that
marginalises to the given SoDGSes?”

This question has been solved for sets of desirable gam-
bles by Miranda and Zaffalon [23], who also discussed
an interesting connection with valuation algebras. This
connection has been further developed by Casanova et al.
[5, 6]. In this work, we build on these results to provide
a solution for SoDGSes. At this point, we would like to
stress that themarginal problem, aswe understand it, is a
satisfiability problem, which naturally arises in different
subfields in artificial intelligence – we refer to Miranda
and Zaffalon [23, Section 1] for an overview.
Let us first make this problem more precise. We gen-

eralise Miranda and Zaffalon [23, Definitions 9 and 10]
from sets of desirable gambles to the current setting.

Definition 5.1 (Pairwise compatibility). Two coherent
SoDGSes 𝐾1 ⊆ 𝒬(𝒳𝑆1) and 𝐾2 ⊆ 𝒬(𝒳𝑆2) are called pair-
wise compatible if

Marg𝑆1∩𝑆2 𝐾1 = Marg𝑆1∩𝑆2 𝐾2.

The 𝑚 coherent SoDGSes 𝐾𝓁 ⊆ 𝒬(𝒳𝑆𝓁), 𝓁 ∈ {1,… , 𝑚},
are called pairwise compatible if any two of them are
pairwise compatible. Similarly, two coherent sets of de-
sirable gambles 𝐷1 ⊆ ℒ(𝒳𝑆1) and 𝐷2 ⊆ ℒ(𝒳𝑆2) are pair-
wise compatible if marg𝑆1∩𝑆2 𝐷1 = marg𝑆1∩𝑆2 𝐷2, and
𝑚 coherent sets of desirable gambles 𝐷𝓁 ⊆ 𝒬(𝒳𝑆𝓁),
𝓁 ∈ {1,… , 𝑚}, are called pairwise compatible if any two
of them are pairwise compatible.

In order to conclude that 𝐾1 and 𝐾2 are pairwise com-
patible, it suffices that the marginalisations of their rep-
resentations coincide.

Proposition 5.1. Consider two coherent SoDGSes 𝐾1 ⊆
𝒬(𝒳𝑆1) and 𝐾2 ⊆ 𝒬(𝒳𝑆2). If

marg𝑆1∩𝑆2 𝒟𝐾1 = marg𝑆1∩𝑆2 𝒟𝐾2

then they are pairwise compatible.

Proof. Use Proposition 4.1 to infer that marg𝑆1∩𝑆2 𝒟𝐾1
represents Marg𝑆1∩𝑆2 𝐾1, and, similarly, that
marg𝑆1∩𝑆2 𝒟𝐾2 represents Marg𝑆1∩𝑆2 𝐾2. Since
these two representations coincide, necessarily
also Marg𝑆1∩𝑆2 𝐾1 = Marg𝑆1∩𝑆2 𝐾2, so that 𝐾1 and 𝐾2
are pairwise compatible, indeed.

Moreover, it turns out that for coherent SoDGSes with
finite representations, this sufficient condition is also
necessary, making it an equivalent property to pairwise
compatibility.

Proposition 5.2. Consider two coherent SoDGSes 𝐾1 ⊆
𝒬(𝒳𝑆1) and 𝐾2 ⊆ 𝒬(𝒳𝑆2) that have finite representations.
Then they are pairwise compatible if and only if

marg𝑆1∩𝑆2 𝒟𝐾1 = marg𝑆1∩𝑆2 𝒟𝐾2 .
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Proof. Sufficiency is, in a more general context, estab-
lished in Proposition 5.1, so we focus on necessity. Use
Theorem 3.1 to infer that Marg𝑆1∩𝑆2 𝐾1 is represented
by𝒟Marg𝑆1∩𝑆2 𝐾1 and thatMarg𝑆1∩𝑆2 𝐾2 is represented by
𝒟Marg𝑆1∩𝑆2 𝐾2 . Since 𝐾1 has a finite representation, it is
represented by a finite set𝒟, so Proposition 4.1 tells us
thatMarg𝑆1∩𝑆2 𝐾1 is represented by the setmarg𝑆1∩𝑆2 𝒟
which is finite, implying that Marg𝑆1∩𝑆2 𝐾1 has a fi-
nite representation, too. A similar argument shows that
Marg𝑆1∩𝑆2 𝐾2 has a finite representation.
Now use Proposition 3.2 to infer that

Marg𝑆1∩𝑆2 𝐾1 = Marg𝑆1∩𝑆2 𝐾2 ⇔
min𝒟Marg𝑆1∩𝑆2 𝐾1 = min𝒟Marg𝑆1∩𝑆2 𝐾2 .

The proof follows by observing that 𝒟Marg𝑆1∩𝑆2 𝐾1 =
↑min𝒟Marg𝑆1∩𝑆2 𝐾1 = ↑minmarg𝑆1∩𝑆2 𝒟𝐾1 , using The-
orem 3.3 in the first equality and Proposition 4.2
in the second one, and similarly 𝒟Marg𝑆1∩𝑆2 𝐾2 =
↑minmarg𝑆1∩𝑆2 𝒟𝐾2 .

Another way to interpret Proposition 5.2 is that 𝐾1
and 𝐾2 are pairwise compatible if and only if every 𝐷1
in𝒟𝐾1 has a pairwise compatible 𝐷2 in𝒟𝐾2 , and every
𝐷2 in𝒟𝐾2 has a pairwise compatible 𝐷1 in𝒟𝐾1 . We will
also need a global version of compatibility, which is the
requirement in the marginal problem.

Definition 5.2 (Compatibility). The 𝑚 coherent
SoDGSes 𝐾𝓁 ⊆ 𝒬(𝒳𝑆𝓁), 𝓁 ∈ {1,… , 𝑚}, are called
compatible if there is a coherent SoDGS 𝐾 ⊆ 𝒬(𝒳) that
is pairwise compatible with each of them, in the sense
that Marg𝑆𝓁 𝐾 = 𝐾𝓁 for every 𝓁 in {1,… , 𝑚}. We then
also call 𝐾 compatible with 𝐾1, . . . , 𝐾𝑚. Similarly, the
𝑚 coherent sets of desirable gambles 𝐷𝓁 ⊆ ℒ(𝒳𝑆𝓁),
𝓁 ∈ {1,… , 𝑚}, are called compatible if there is a
coherent set of desirable gambles 𝐷 ⊆ ℒ(𝒳) that is
pairwise compatible with each of them, in the sense that
marg𝑆𝓁 𝐷 = 𝐷𝓁 for every 𝓁 in {1,… , 𝑚}. We then also
call 𝐷 compatible with 𝐷1, . . . , 𝐷𝑚.
The following result is directly inspired by Miranda

and Zaffalon [23, Proposition 1], and generalises it to
SoDGSes. It provides an equivalent condition to compat-
ibility.

Proposition 5.3. Consider any coherent SoDGSes 𝐾1 ⊆
𝒬(𝒳𝑆1), 𝐾2 ⊆ 𝒬(𝒳𝑆2), . . . , 𝐾𝑚 ⊆ 𝒬(𝒳𝑆𝑚 ). Then they
are compatible if and only if the natural extension 𝐾 ∶=
cl𝒦

(⋃
𝓁≤𝑚 𝐾𝓁

)
is compatible with them, or, in other words,

if and only if Marg𝑆𝑖 𝐾 = 𝐾𝑖 for every 𝑖 in {1,… , 𝑚}.

Proof. For necessity, consider any 𝑖 in {1,… , 𝑚}. Since𝐾1,
. . . , 𝐾𝑚 are compatible, there is a coherent SoDGS 𝐾⋆ ⊆
𝒬(𝒳) such that, for all 𝓁 ∈ {1,… , 𝑚},Marg𝑆𝓁 𝐾

⋆ = 𝐾𝓁,
or equivalently, 𝐾⋆ ∩ 𝒬(𝒳𝑆𝓁) = 𝐾𝓁. Hence

⋃
𝓁≤𝑚 𝐾𝓁 ⊆

𝐾⋆, whence also 𝐾𝑖 ⊆ cl𝒦
(⋃

𝓁≤𝑚 𝐾𝓁
)

= 𝐾 ⊆

cl𝒦(𝐾⋆) = 𝐾⋆, where we used the facts that cl𝒦 is a
closure operator and that 𝐾⋆ is coherent. Taking into
account thatMarg𝑆𝑖 preserves the order, we obtain that
𝐾𝑖 = Marg𝑆𝑖 𝐾𝑖 ⊆ Marg𝑆𝑖 𝐾 ⊆ Marg𝑆𝑖 𝐾

⋆ = 𝐾𝑖 , whence,
indeed,Marg𝑆𝑖 𝐾 = 𝐾𝑖 .
For sufficiency, it suffices to show that 𝐾 is coherent,

because then it serves as a coherent SoDGS on 𝒳 that
is compatible with 𝐾1, . . . , 𝐾𝑚. To this end, taking into
account Theorem 2.2 with𝒜 = 𝐾, it suffices to show that
∅ ∉ 𝐾 and {0} ∉ 𝐾. For every 𝑖 in {1,… , 𝑚}, note that
∅ ∉ 𝐾𝑖 and {0} ∉ 𝐾𝑖 by 𝐾𝑖 ’s coherence. Since ∅ and {0}
belong to 𝒬(𝒳𝑆𝑖 ) for every 𝑖 in {1,… , 𝑚}, we find by the
compatibility of 𝐾 with 𝐾1, . . . , 𝐾𝑚 that, indeed, ∅ ∉ 𝐾
and {0} ∉ 𝐾.

We are now in a position to establish the main result
of this paper. When we are given coherent SoDGSes that
are pairwise compatible, under what condition are they
compatible? In the special case of probability measures,
Beeri et al. [2] showed that a sufficient condition is that
the index sets satisfy the running intersection property [cf.
also 21]. Miranda and Zaffalon [23, Theorem 2] have es-
tablished that this is also sufficient for the compatibility
of sets of desirable gambles, and it will play an important
role in the present setting, too.

Definition 5.3 (Running intersection property [23, Defi-
nition 11]). The index sets 𝑆1, . . . , 𝑆𝑚 satisfy the running
intersection property when

(∀𝓁 ∈ {2,… , 𝑚})(∃𝑖⋆ < 𝓁)𝑆𝓁 ∩ 𝑆𝑖⋆ = 𝑆𝓁 ∩
⋃

𝑖<𝓁 𝑆𝑖 .
(RIP)

Note that it may happen that 𝑆1, . . . , 𝑆𝑚 does not sat-
isfy the running intersection property, while a reordering
𝑆𝜎(1), . . . , 𝑆𝜎(𝑚), with 𝜎 a permutation of {1,… , 𝑚}, does.
To keep our exposition simple, we will assume from here
on that the index sets 𝑆1, . . . , 𝑆𝑚 are ordered in such a
way that they satisfy the running intersection property,
whenever this is possible. This is not a substantial con-
straint: if they are not in this order, then simply reorder
them, and the following results will continue to hold.

Theorem 5.1. Consider any coherent SoDGSes 𝐾1 ⊆
𝒬(𝒳𝑆1), 𝐾2 ⊆ 𝒬(𝒳𝑆2), . . . , 𝐾𝑚 ⊆ 𝒬(𝒳𝑆𝑚 ) that have finite
representations. If 𝑆1, . . . , 𝑆𝑚 satisfy (RIP) and𝐾1, . . . ,𝐾𝑚
are pairwise compatible, then 𝐾1, . . . , 𝐾𝑚 are compatible.

Proof. For any 𝓁 ∈ {1,… , 𝑚} let �̂�𝓁 ∶= cl𝒦
(⋃

𝑗≤𝓁 𝐾𝑗
)
.

Wewill show, using induction on𝓁, that �̂�𝓁 is compatible
with 𝐾1, . . . , 𝐾𝓁. Proposition 5.3 then guarantees that 𝐾1,
. . . , 𝐾𝑚 are compatible.
For the base case, start with 𝓁 = 1. Note that �̂�1 = 𝐾1,

so it is trivially compatible with 𝐾1.
For the induction step, consider any 𝓁 ∈ {2,… , 𝑚} and

assume that �̂�𝓁−1 is compatible with 𝐾1, . . . , 𝐾𝓁−1. We
will show that �̂�𝓁 = cl𝒦

(⋃
𝑖≤𝓁 𝐾𝑖

)
= cl𝒦(�̂�𝓁−1 ∪ 𝐾𝓁) is
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compatible with �̂�𝓁−1 and 𝐾𝓁. Using the compatibility
of �̂�𝓁−1 with 𝐾1, . . . , 𝐾𝓁−1, the desired result follows. Let

�̂�𝓁 ∶= {cl𝒟(𝐷𝓁−1 ∪ 𝐷𝓁)∶ 𝐷𝓁−1 ∈ 𝒟�̂�𝓁−1 , 𝐷𝓁 ∈ 𝒟𝐾𝓁 ,
𝐷𝓁−1, 𝐷𝓁 pairwise compatible},

and we will show that 𝐾�̂�𝓁
is compatible with �̂�𝓁−1 and

𝐾𝓁, and that �̂�𝓁 = 𝐾�̂�𝓁
.

We will first show that marg𝑆𝓁 �̂�𝓁 = 𝒟𝐾𝓁 . To this
end, consider any 𝐷𝓁 in 𝒟𝐾𝓁 . By (RIP) there is some
𝑖⋆ < 𝓁 such that 𝑆𝓁∩𝑆𝑖⋆ = 𝑆𝓁∩

⋃
𝑖<𝓁 𝑆𝑖 . By the pairwise

compatibility of 𝐾𝓁 and 𝐾𝑖⋆ , there is some 𝐷𝑖⋆ in𝒟𝐾𝑖⋆
that is pairwise compatible with 𝐷𝓁, taking into account
Proposition 5.2. But by the pairwise compatibility of 𝐾𝑖⋆
with any 𝐾𝑖 (with 𝑖 ∈ {1,… ,𝓁 − 1} ⧵ {𝑖⋆}) there is some
𝐷𝑖 ∈ 𝒟𝐾𝑖 that is pairwise compatible with 𝐷𝑖⋆ . Since
𝑆𝓁 ∩ 𝑆𝑖⋆ ⊇ 𝑆𝓁 ∩ 𝑆𝑖 , this implies that

marg𝑆𝓁∩𝑆𝑖 𝐷𝓁 = marg𝑆𝓁∩𝑆𝑖∩𝑆𝑖⋆ 𝐷𝓁
= marg𝑆𝓁∩𝑆𝑖∩𝑆𝑖⋆ 𝐷𝑖⋆
= marg𝑆𝓁∩𝑆𝑖∩𝑆𝑖⋆ 𝐷𝑖 = marg𝑆𝓁∩𝑆𝑖 𝐷𝑖

so we infer that 𝐷𝓁 and 𝐷𝑖 are pairwise compatible, and
therefore, so is 𝐷𝓁 with �̂�𝓁−1 ∶= cl𝒟

(⋃
𝑖<𝓁 𝐷𝑖

)
, which is

coherent and compatible with 𝐷1, . . . , 𝐷𝓁−1 due to [23,
Proposition 1 and Theorem 2].
Infer that 𝐾𝑖 ⊆ 𝐾𝐷𝑖 ⊆ 𝐾�̂�𝓁−1 for any 𝑖 in {1,… ,𝓁 − 1},

and therefore
⋃

𝑖<𝓁 𝐾𝑖 ⊆ 𝐾�̂�𝓁−1 . Taking 𝐾�̂�𝓁−1 ’s coher-
ence into account, we infer that then also �̂�𝓁−1 ⊆ 𝐾�̂�𝓁−1 ,
so �̂�𝓁−1 belongs to𝒟�̂�𝓁−1 . Consider now cl𝒟(�̂�𝓁−1∪𝐷𝓁),
which belongs to �̂�𝓁 because �̂�𝓁−1 and 𝐷𝓁 are pairwise
compatible, �̂�𝓁−1 belongs to𝒟�̂�𝓁−1 , and𝐷𝓁 to𝒟𝐾𝓁 . Then,
again invoking the pairwise compatibility of �̂�𝓁−1 and
𝐷𝓁, we find that marg𝑆𝓁−1 cl𝒟(�̂�𝓁−1 ∪ 𝐷𝓁) = 𝐷𝓁, so 𝐷𝓁
belongs tomarg𝑆𝓁−1 �̂�𝓁, indeed.
The converse set inclusion follows since

marg𝑆𝓁 cl𝒟(𝐷𝓁−1 ∪ 𝐷𝓁) ⊇ 𝐷𝓁 for any 𝐷𝓁, and hence the
former belongs to 𝒟𝐾𝓁 , too. Using Proposition 4.1, we
infer thatMarg𝑆𝓁 𝐾�̂�𝓁

= 𝐾𝓁.
Next, we will show thatmarg�̂�𝓁−1 �̂�𝓁 = 𝒟�̂�𝓁−1 , where

�̂�𝓁−1 ∶= ⋃
𝑖<𝓁 𝑆𝑖 . To this end, consider any �̂�𝓁−1 in

𝒟�̂�𝓁−1 . Then marg𝑆1 �̂�𝓁−1, . . . , marg𝑆𝓁−1 �̂�𝓁−1 are pair-
wise compatible, and belong to𝒟𝐾1 , . . . ,𝒟𝐾𝓁−1 , respec-
tively. By (RIP) there is some 𝑖⋆ such that 𝑆𝓁 ∩ 𝑆𝑖⋆ =
𝑆𝓁 ∩ �̂�𝓁−1. Taking into account the pairwise compatibil-
ity of 𝐾𝑖⋆ and 𝐾𝓁, we find using that Proposition 5.2
that there is a 𝐷𝓁 in 𝒟𝐾𝓁 pairwise compatible with
marg𝑆𝑖⋆ �̂�𝓁−1. But then

marg�̂�𝓁−1∩𝑆𝓁 �̂�𝓁−1 = marg𝑆𝑖⋆∩𝑆𝓁 �̂�𝓁−1
= marg𝑆𝑖⋆∩𝑆𝓁 marg𝑆𝑖⋆ �̂�𝓁−1
= marg𝑆𝑖⋆∩𝑆𝓁 𝐷𝓁 = marg�̂�𝓁−1∩𝑆𝓁 𝐷𝓁,

so �̂�𝓁−1 and 𝐷𝓁 are pairwise compatible. We find that
cl𝒟(�̂�𝓁−1 ∪ 𝐷𝓁) belongs to �̂�𝓁, and, taking into ac-
count [23, Theorem 2], we find thatmarg�̂�𝓁−1 cl𝒟(�̂�𝓁−1∪
𝐷𝓁) = �̂�𝓁−1, so that �̂�𝓁−1 ∈ marg�̂�𝓁−1 �̂�𝓁. Since the
choice of �̂�𝓁−1 in𝒟�̂�𝓁−1 was arbitrary, this implies that
𝒟�̂�𝓁−1 ⊆ marg�̂�𝓁−1 �̂�𝓁.
The converse set inclusion follows since 𝐷𝓁−1 ⊆

marg𝑆𝓁−1 cl𝒟(𝐷𝓁−1 ∪ 𝐷𝓁) for any 𝐷𝓁−1, and taking into
account that 𝒟(𝐾𝓁−1) is an upset, the latter belongs to
it as well. Using Proposition 4.1 again, we infer that
Marg�̂�𝓁−1 𝐾�̂�𝓁

= �̂�𝓁−1, so that 𝐾�̂�𝓁
is compatible with

�̂�𝓁−1 and 𝐾𝓁, as desired.
To finish the proof, we show that �̂�𝓁 = 𝐾�̂�𝓁

. Since𝐾�̂�𝓁
is compatible with �̂�𝓁−1 and 𝐾𝓁, we know that �̂�𝓁−1 ∪
𝐾𝓁 ⊆ 𝐾�̂�𝓁

, and therefore �̂�𝓁 = cl𝒦(�̂�𝓁−1 ∪ 𝐾𝓁) ⊆ 𝐾�̂�𝓁
since 𝐾�̂�𝓁

is coherent. So it suffices to prove that 𝐾�̂�𝓁
⊆

𝐾𝓁, with �̂�𝓁 =
⋂{𝐾𝐷 ∶ 𝐷 ∈ 𝒟, �̂�𝓁−1 ∪ 𝐾𝓁 ⊆ 𝐾𝐷 } taking

into account Theorem 3.2, and 𝐾�̂�𝓁
=⋂{𝐾𝐷 ∶ 𝐷 ∈ �̂�𝓁}.

In turn, it suffices to show that {𝐷 ∈ 𝒟∶ �̂�𝓁−1 ∪ 𝐾𝓁 ⊆
𝐾𝐷 } ⊆ ↑�̂�𝓁, using [31, Proposition 4]. To this end, con-
sider any 𝐷 ∈ 𝒟 such that �̂�𝓁−1 ⊆ 𝐾𝐷 and 𝐾𝓁 ⊆ 𝐾𝐷 ,
implying that �̂�𝓁−1 ⊆ 𝐾marg�̂�𝓁−1 𝐷 and 𝐾𝓁 ⊆ 𝐾marg𝑆𝓁 𝐷
taking into account Proposition 4.1. But marg�̂�𝓁−1 𝐷
andmarg𝑆𝓁 𝐷 are pairwise compatible because they are
derived from the same joint, and 𝐷 ⊇ marg�̂�𝓁−1 𝐷 ∪
marg𝑆𝓁 𝐷, so 𝐷 ∈ ↑�̂�𝓁, indeed. This establishes that
�̂�𝓁 = 𝐾�̂�𝓁

, which is therefore compatible with �̂�𝓁−1
and 𝐾𝓁.

Theorem 5.1 does not only guarantee that (RIP) and
pairwise compatibility of coherent SoDGSes with finite
representations imply compatibility, but its proof also
provides a way to construct a representation of the small-
est compatible joint cl𝒦

(⋃
𝓁≤𝑚 𝐾𝓁

)
, which we spell out

next.

Proposition 5.4. 4 Consider coherent and compatible
SoDGSes 𝐾1 ⊆ 𝒬(𝒳𝑆1), 𝐾2 ⊆ 𝒬(𝒳𝑆2), . . . , 𝐾𝑚 ⊆ 𝒬(𝒳𝑆𝑚 ).
Then the natural extension 𝐾 ∶= cl𝒦

(⋃
𝓁≤𝑚 𝐾𝓁

)
is coher-

ent and represented by

𝒟 ∶= {cl𝒟(𝐷1 ∪⋯ ∪ 𝐷𝑚)∶
𝐷1 ∈ 𝒟𝐾1 ,… , 𝐷𝑚 ∈ 𝒟𝐾𝑚 , 𝐷1,… , 𝐷𝑚 compatible}.

Proof. Since𝐾1, . . . ,𝐾𝑚 are compatible, they are derived
from a joint coherent �̂�, which then necessarily is a su-
perset of 𝐾. This implies that �̂� ∶= ⋃

𝓁≤𝑚 𝐾𝓁 is consis-
tent, guaranteeing 𝐾’s coherence by Theorem 2.2.
We show that 𝐾𝒟�̂�

⊆ 𝐾𝒟. To this end, consider any 𝐷
in𝒟. Then 𝐷 = cl𝒟(𝐷1 ∪⋯ ∪ 𝐷𝑚) for some 𝐷1 ∈ 𝒟𝐾1 ,
. . . , 𝐷𝑚 ∈ 𝒟𝐾𝑚 , whence 𝐾𝓁 ⊆ 𝐾𝐷𝓁 ⊆ 𝐾𝐷 for every 𝓁

4We are indebted to Reviewer 4 for providing us with the current
version of the result, and its proof.
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in {1,… , 𝑚}, so indeed �̂� ⊆ 𝐾𝐷 and hence 𝐷 ∈ 𝒟�̂� .
Since the choice of 𝐷 in 𝒟 was arbitrary, this implies
that𝒟 ⊆ 𝒟�̂� , which in turn implies that 𝐾𝒟�̂�

⊆ 𝐾𝒟.
Next, we show that 𝐾𝒟 ⊆ 𝐾𝒟�̂�

. To this end, con-
sider any 𝐹 in 𝒬 such that 𝐹 ∉ 𝐾𝒟�̂�

. This implies
that there is some 𝐷 in 𝒟�̂� such that 𝐹 ∩ 𝐷 = ∅.
Consider any 𝓁 in {1,… , 𝑚}. That 𝐷 ∈ 𝒟�̂� implies
that 𝐾𝓁 ⊆ 𝐾𝐷 , and therefore 𝐾𝓁 = Marg𝑆𝓁 𝐾𝓁 ⊆
Marg𝑆𝓁 𝐾𝐷 = 𝐾marg𝑆𝓁 𝐷 , so marg𝑆𝓁 𝐷 ∈ 𝒟𝐾𝓁 . Since
𝐷 ⊇ cl𝒟(marg𝑆1 𝐷 ∪ ⋯ ∪ marg𝑆𝑚 𝐷), we infer from
𝐹 ∩𝐷 = ∅ that 𝐹 ∩ cl𝒟(marg𝑆1 𝐷 ∪⋯ ∪marg𝑆𝑚 𝐷) = ∅,
But marg𝑆1 𝐷, . . . , marg𝑆𝑚 𝐷 are compatible because
they are derived from the common coherent joint 𝐷, so
𝐹 ∉ 𝐾𝒟. Since the choice of 𝐹 was arbitrary, together
with the result established in the paragraph above, this
implies that 𝐾𝒟 = 𝐾𝒟�̂�

.
Taking into account Theorem 3.2, we have that𝐾𝒟�̂�

=
cl𝒦(�̂�) = 𝐾, and therefore 𝐾𝒟 = 𝐾, so𝒟 represents 𝐾,
indeed.

It is noteworthy that Proposition 5.4 does not require
the coherent SoDGSes to admit a finite representation.
If the coherent SoDGSes 𝐾1 ⊆ 𝒬(𝒳𝑆1), 𝐾2 ⊆ 𝒬(𝒳𝑆2),
. . . , 𝐾𝑚 ⊆ 𝒬(𝒳𝑆𝑚 ) do admit finite representations, then
Proposition 5.4 provides a way to find a representation
of the smallest compatible joint cl𝒦

(⋃
𝓁≤𝑚 𝐾𝓁

)
.

6. Conclusions
We have established in Theorem 5.1 that coherent

SoDGSes with a finite representation that are pairwise
compatible, and whose index sets satisfy the running
intersection property, are compatible. In order to do so,
we had to study the representation of coherent SoDGSes
in more detail. We have established in Theorem 3.3 that
the representation𝒟𝐾 of a coherent SoDGS 𝐾 is deter-
mined by its minimal elementsmin𝒟𝐾 , which by Propo-
sition 3.1 is a finite set whenever 𝐾 admits a finite rep-
resentation. Moreover, Proposition 3.2 establishes that
the coherent SoDGSes that admit a finite representation
are uniquely determined by finite antichains of coherent
sets of desirable gambles.
Our solution to the marginal problem in Theorem 5.1

generalises Miranda and Zaffalon [23, Theorem 2], the
result for sets of desirable gambles. Importantly, they
note [23, Appendix A.4] that coherent sets of desirable
gambles, with the standard definition of marginalisa-
tion, can be interpreted as a valuation algebra [19]. As
made explicit by Casanova et al. [5, 6], the structure of a
valuation algebra is rich enough to prove Theorem 5.1
directly.
Preliminary work indicates that the coherent

SoDGSes, with our definition of marginalisation in
Definition 4.2, also form a valuation algebra. As a
consequence, Theorem 5.1 will come for free, even

for coherent SoDGSes that do not necessarily admit a
finite representation. However, a valuation algebra does
not allow us to derive a representation in the sense of
Proposition 5.4, at least not as far as we see. It is an
interesting open question whether the representation
Theorem 3.1 can be incorporated in the framework of
valuation algebras, and we intend to pursue this in the
future. Answering this would be useful for the study of
compatibility. This paper – specifically Propositions 4.2
and 5.2 – establishes foundations for this project.
Another direction for future work, is to study the com-

patibility of conditional SoDGSes. Miranda and Zaffalon
have investigated this problem, which they call the ‘com-
patibility problem’, for sets of desirable gambles in quite
some detail [23, Section 3]. This can be done best using
valuation algebras, so incorporating representation in
the framework of valuation algebras would be useful for
this project, too.
The new interesting subclass of coherent SoDGSes

that we have introduced in this paper, namely SoDGSes
with a finite representation, served its main purpose in
the proofs of Lemma 3.1 and Proposition 3.2. We have
indicated in Example 3.1 that this subclass is sufficiently
broad: it contains all the SoDGSes based on Sen–Walley
maximality, and also based on E-admissibility with a
finite set of probabilities. However, preliminary work
indicates that mixing Archimedean SoDGSes [15] also
have the property described in Proposition 3.2, evenwhen
they do not admit a finite representation; we intend to
report on this in the future. An interesting open and
foundational question is what property on SoDGSes is
necessary for the conclusion of Proposition 3.2 to hold.
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