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Consider a set of things T, some of which
have an abstract property called desirability.

S ⊆ T is a set of desirable things (SDT) to You
if You state that all things in S desirable.

There is an inference mechanism associated
with desirability via a finitary closure operator

ClD : P(T)→ P(T) : S 7→ ClD(S).

D1. if all things in S are desirable, then so are
all things in ClD(S).

There’s a set of forbidden things T−:

D2. no thing in T− is desirable.

The coherent SDTs are:

D := {D ⊆ T: D = ClD(D) and D∩T− = /0}.

Things in T+ := ClD( /0) are always desirable.

D3. T+∩T− = /0, or equivalently, D 6= /0.

Desirable things

CONJUNCTION

S ⊆ T is a desirable set of things to You if You
state that at least one thing in S is desirable.

K ⊆ P(T) is Your set of desirable sets of
things (SDS) if each W ∈ K is a desirable set
of things to You.

Kfin is the set (intersection structure) of all
finitely coherent SDSes, and leads to a clo-
sure operator ClKfin, defined by

ClKfin(W) :=
⋂
{K ∈ Kfin : W ⊆ K}.

Desirable sets of things

DISJUNCTION

You have a ‘true’ set of desirable things DT,
which assessments W ⋐ P(T) provide infor-
mation about. D is a set of possible ‘worlds’.

Each desirable set S ∈W leads to an event

DS := {D ∈ D : S∩D 6= /0} ⊆ D,

and the assessment W ⊆ P(T) to the event

E (W) :=
⋂

S∈W

DS :=
⋂

S∈W

{D ∈ D : S∩D 6= /0} ⊆ D,

the set of all worlds that remain possible after
Your assessment W.

The set of events Efin := {E (W) : W ⋐ P(T)}
is a bounded distributive lattice with top D
and bottom /0.

Proper filters of events F ∈ F(Efin) corre-
spond to consistent and deductively closed
sets of propositional statements about DT.

Possible worlds models

PROPOSITIONAL LOGIC

An SDS K ⊆ P(T) is finitely coherent if:

K1. /0 /∈ K;

K2. if S1 ∈ K and S1 ⊆ S2 then S2 ∈ K, for all S1,S2 ∈ P(T);

K3. if S ∈ K then S \T− ∈ K, for all S ∈ P(T);

K4. {t+} ∈ K for all t+ ∈ T+;

K5. if tσ ∈ ClD(σ(W)) for all σ ∈ ΦW, then {tσ : σ ∈ ΦW} ∈ K,
for all /0 6=W ⋐ K.

Here ‘⋐’ means ‘is a finite subset of’, and ΦW is the set of
all selection maps σ on W, so σ(S) ∈ S for all S ∈W.

LIFTING

The structure 〈D,⊆〉 can be
embedded in 〈Kfin,⊆〉 by the
endomorphism

D 7→ KD

with

KD := {S ⊆ T: D∩S 6= /0}.

EMBEDDING

The structures 〈Kfin,⊆〉 and 〈F(Efin),⊆〉 are order
isomorphic, via the order isomorphisms

φfin
D (K) := {E (W) : W ⋐ K},

and
κfin

D (F) := {S ⊆ T: DS ∈ F}.

ORDER ISOMORPHISM

A proper filter F ∈ F(Efin) is prime if

PF. (∀E1,E2 ∈ Efin)
(
E1∪E2 ∈ F ⇒ (E1 ∈ F or E2 ∈ F)

)
.

Fp(Efin) is the set of all prime filters.

The well-known Prime Filter Representation Theorem
states that:

A set of events F is a proper filter if and only if it is the
non-empty intersection of all the prime filters it is included
in:

F =
⋂

{G ∈ Fp(Efin) : F ⊆ G}︸ ︷︷ ︸
6= /0

.

Prime filters

REPRESENTATION

A finitely coherent SDS K ∈ Kfin is complete if

C. (∀S1,S2 ⊆ T)
(
S1∪S2 ∈ K ⇒ (S1 ∈ K or S2 ∈ K)

)
.

Kfin,c is the set of all complete and finitely coherent SDSes.

The established order isomorphism allows us to translate
the Prime Filter Representation Theorem into:

An SDS K is finitely coherent if and only if it is the non-
empty intersection of all the complete and finitely coherent
SDSes it is included in:

K =
⋂

{K′ ∈ Kfin,c : K ⊆ K′}︸ ︷︷ ︸
6= /0

.

Complete SDSes

REPRESENTATION

We concentrate on the finite sets of things in

Q(T) := {S ∈ P(T) : S ⋐ T}.

For any SDS W ⊆ P(T), we call

fin(W) :=W∩Q(T)

its finite part, and collect all its sets with finite desirable
subsets in

fty(W) := {S ∈ P(T) : (∃Ŝ ∈W∩Q(T))Ŝ ⋐ S},

its finitary part.

An SDS W ⊆ P(T) is called finitary if all its desirable
sets have finite desirable subsets, so

W ⊆ fty(W).

A finitely coherent SDS K is finitary iff K = fty(K).

Finitary SDSes

A conjunctive SDS W ⊆ P(T) is a finitary SDS all of
whose minimal elements are singletons:

(∀S ∈W)(∃t ∈ S){t} ∈W.

A finitely coherent SDS K is conjunctive if and only if
there is some coherent SDT D such that K = KD and
then necessarily:

D = {t ∈ T: {t} ∈ K}.

The finitary part of any finitely coherent and complete
SDS is finitely coherent and conjunctive; consequently,
any finitary and finitely coherent SDS is complete if and
only if it is conjunctive.

Conjunctive SDSes

A finitary SDS K is finitely coherent if and only if it is
the non-empty intersection of all the finitely coherent
conjunctive SDSes it is included in:

K =
⋂

{KD : D ∈ D and K ⊆ KD}︸ ︷︷ ︸
6= /0

.

REPRESENTATION

Note: the paper also discusses
and studies stronger, infinitary ver-
sions of the lifting axioms K1–K5.


