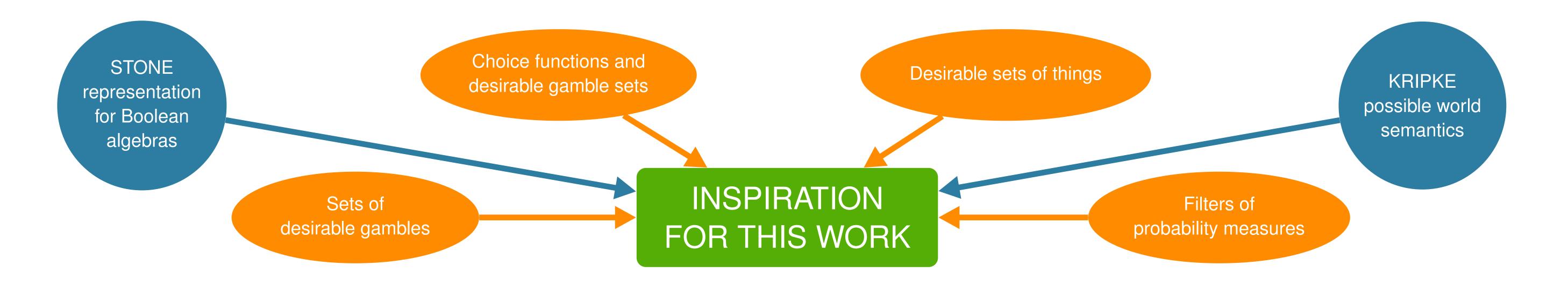
Desirable sets of things and their logic

Gert de Cooman + Arthur Van Camp + Jasper De Bock

Foundations Lab (FLip), Ghent University, Belgium + Department of Philosophy, University of Bristol, UK



Desirable things

Consider a set of things *T*, some of which have an abstract property called desirability.

 $S \subseteq T$ is a set of desirable things (SDT) to You if You state that *all things* in *S* desirable.

There is an inference mechanism associated with desirability via a *finitary* closure operator

 $\operatorname{Cl}_{\mathbf{D}} \colon \mathscr{P}(T) \to \mathscr{P}(T) \colon S \mapsto \operatorname{Cl}_{\mathbf{D}}(S).$

D₁. if all things in *S* are desirable, then so are all things in $Cl_D(S)$.

There's a set of forbidden things T_{-} :

 D_2 . no thing in T_- is desirable.

The coherent SDTs are:

 $\overline{\mathbf{D}} := \{ D \subseteq T : D = \operatorname{Cl}_{\mathbf{D}}(D) \text{ and } D \cap T_{-} = \emptyset \}.$ Things in $T_{+} := \operatorname{Cl}_{\mathbf{D}}(\emptyset)$ are always desirable. $\mathsf{D}_{3}. T_{+} \cap T_{-} = \emptyset$, or equivalently, $\overline{\mathbf{D}} \neq \emptyset$.

CONJUNCTION -

The structure $\langle \overline{\mathbf{D}}, \subseteq \rangle$ can be embedded in $\langle \overline{\mathbf{K}}_{fin}, \subseteq \rangle$ by the endomorphism $D \mapsto K_D$

with

An SDS $K \subseteq \mathscr{P}(T)$ is finitely coherent if: $K_1. \emptyset \notin K;$ $K_2.$ if $S_1 \in K$ and $S_1 \subseteq S_2$ then $S_2 \in K$, for all $S_1, S_2 \in \mathscr{P}(T);$

K₃. if $S \in K$ then $S \setminus T_{-} \in K$, for all $S \in \mathscr{P}(T)$;

 $\mathsf{K}_4. \{t_+\} \in K \text{ for all } t_+ \in T_+;$

K₅. if $t_{\sigma} \in \operatorname{Cl}_{\mathbf{D}}(\sigma(W))$ for all $\sigma \in \Phi_W$, then $\{t_{\sigma} : \sigma \in \Phi_W\} \in K$, for all $\emptyset \neq W \Subset K$.

Here ' \Subset ' means 'is a finite subset of', and Φ_W is the set of

LIFTING

Desirable sets of things

 $S \subseteq T$ is a desirable set of things to You if You state that *at least one thing* in *S* is desirable.

 $K \subseteq \mathscr{P}(T)$ is Your set of desirable sets of things (SDS) if each $W \in K$ is a desirable set of things to You.

 $\overline{K}_{\rm fin}$ is the set (intersection structure) of all finitely coherent SDSes, and leads to a closure operator ${\rm Cl}_{K_{\rm fin}}$, defined by

 $\operatorname{Cl}_{\mathbf{K}_{\operatorname{fin}}}(W) := \bigcap \{ K \in \overline{\mathbf{K}}_{\operatorname{fin}} \colon W \subseteq K \}.$

DISJUNCTION

Possible worlds models

You have a 'true' set of desirable things D_T , which assessments $W \Subset \mathscr{P}(T)$ provide information about. $\overline{\mathbf{D}}$ is a set of possible 'worlds'.

Each desirable set $S \in W$ leads to an event $D_S := \{D \in \overline{\mathbf{D}} : S \cap D \neq \emptyset\} \subseteq \overline{\mathbf{D}},$ and the assessment $W \subseteq \mathscr{P}(T)$ to the event $\mathscr{E}(W) := \bigcap_{S \in W} D_S := \bigcap_{S \in W} \{D \in \overline{\mathbf{D}} : S \cap D \neq \emptyset\} \subseteq \overline{\mathbf{D}},$

the set of all worlds that remain possible after Your assessment *W*.

The set of events $\mathbf{E}_{fin} \coloneqq \{\mathscr{E}(W) \colon W \subseteq \mathscr{P}(T)\}$ is a bounded distributive lattice with top $\overline{\mathbf{D}}$ and bottom \emptyset .

Proper filters of events $\mathscr{F} \in \overline{\mathbb{F}}(\mathbf{E}_{fin})$ correspond to consistent and deductively closed sets of propositional statements about D_{T} .

^L PROPOSITIONAL LOGIC ⁻

all selection maps σ on W, so $\sigma(S) \in S$ for all $S \in W$.

Complete SDSes

A finitely coherent SDS $K \in \overline{\mathbf{K}}_{\text{fin}}$ is complete if C. $(\forall S_1, S_2 \subseteq T) (S_1 \cup S_2 \in K \Rightarrow (S_1 \in K \text{ or } S_2 \in K)).$

 $\overline{K}_{\text{fin},\text{c}}$ is the set of all complete and finitely coherent SDSes.

The established order isomorphism allows us to translate the Prime Filter Representation Theorem into:

An SDS *K* is finitely coherent if and only if it is the *nonempty* intersection of all the complete and finitely coherent SDSes it is included in:

$$K = \bigcap \{ \underbrace{K' \in \overline{\mathbf{K}}_{\text{fin,c}} \colon K \subseteq K' }_{\neq \emptyset}$$
- REPRESENTATION -

The structures $\langle \overline{\mathbf{K}}_{\mathrm{fin}}, \subseteq \rangle$ and $\langle \overline{\mathbf{F}}(\mathbf{E}_{\mathrm{fin}}), \subseteq \rangle$ are order isomorphic, via the order isomorphisms $\varphi_{\mathbf{D}}^{\mathrm{fin}}(\mathcal{K}) \coloneqq \{\mathscr{E}(W) \colon W \subseteq \mathcal{K}\},\$ and $\kappa_{\mathbf{D}}^{\mathrm{fin}}(\mathscr{F}) \coloneqq \{S \subseteq T \colon \overline{\mathbf{D}}_{S} \in \mathscr{F}\}.$ ORDER ISOMORPHISM

Prime filters

A proper filter $\mathscr{F} \in \overline{\mathbb{F}}(\mathbf{E}_{\mathrm{fin}})$ is prime if

 $\mathsf{PF.} (\forall E_1, E_2 \in \mathbf{E}_{\mathrm{fin}}) (E_1 \cup E_2 \in \mathscr{F} \Rightarrow (E_1 \in \mathscr{F} \text{ or } E_2 \in \mathscr{F})).$

 $\overline{\mathbb{F}}_{p}(\mathbf{E}_{fin})$ is the set of all prime filters.

S

antics

The well-known Prime Filter Representation Theorem states that:

A set of events \mathscr{F} is a proper filter if and only if it is the *non-empty* intersection of all the prime filters it is included in:

$$\mathscr{F} = \bigcap \{ \mathscr{G} \in \overline{\mathbb{F}}_p(\mathbf{E}_{\mathrm{fin}}) \colon \mathscr{F} \subseteq \mathscr{G} \}_{\neq \emptyset}.$$

REPRESENTATION

We concentrate on the *finite sets of things* in

 $\mathscr{Q}(T) \coloneqq \{S \in \mathscr{P}(T) \colon S \Subset T\}.$

Finitary SDSes

For any SDS $W \subseteq \mathscr{P}(T)$, we call

 $\operatorname{fin}(W) := W \cap \mathscr{Q}(T)$

its finite part, and collect all its sets with finite desirable subsets in

 $fty(W) := \{ S \in \mathscr{P}(T) : (\exists \hat{S} \in W \cap \mathscr{Q}(T)) \hat{S} \Subset S \},$ its finitary part.

An SDS $W \subseteq \mathscr{P}(T)$ is called finitary if all its desirable sets have finite desirable subsets, so

 $W \subseteq \operatorname{fty}(W)$. A finitely coherent SDS *K* is finitary iff $K = \operatorname{fty}(K)$. **Conjunctive SDSes**

A conjunctive SDS $W \subseteq \mathscr{P}(T)$ is a finitary SDS all of whose minimal elements are singletons:

 $(\forall S \in W) (\exists t \in S) \{t\} \in W.$

A finitely coherent SDS *K* is conjunctive if and only if there is some coherent SDT *D* such that $K = K_D$ and then necessarily:

 $D = \{t \in T: \{t\} \in K\}.$

The finitary part of any finitely coherent and complete SDS is finitely coherent and conjunctive; consequently, any finitary and finitely coherent SDS is complete if and only if it is conjunctive.

Note: the paper also discusses and studies stronger, infinitary versions of the lifting axioms K_1-K_5 .

A *finitary* SDS *K* is finitely coherent if and only if it is the *non-empty* intersection of all the finitely coherent conjunctive SDSes it is included in:

