A Study of Jeffrey’s Rule With Imprecise Probability Models

1 The setting

Given You have a finite possibility space Ω and a probability measure P on Ω

New information You observe a new probability measure \check{P} on a partition \mathscr{B} of Ω.

Question How should you update your probability measure P taking into account this informa tion? We are looking for a probability measure P on Ω that satisfies the constraints

- $\widehat{P}(B)=\check{P}(B)$ for all B in \mathscr{B},
[agreeing on \mathscr{B}]
- $\widehat{P}(A \mid B)=P(A \mid B)$ for all B in \mathscr{B} and $A \subseteq \Omega$.
[rigidity]

Jeffrey's Rule The unique probability measure \widehat{P} on Ω that satisfies 'agreeing on \mathscr{B} ' and 'rigidity is given by

$$
\widehat{P}(A)=\sum_{B \in \mathscr{B}} P(A \mid B) \check{P}(B) \quad \text { for all } A \subseteq \Omega
$$

3 Sets of desirable gamble sets

$\mathscr{Q}(\Omega)$ is the collection of finite subsets of gambles on Ω. A set of desirable gamble sets $K \subseteq \mathscr{Q}$ is a collection of sets F of gambles that contain at least one gamble $f \in F$ that is preferred over 0 .
$F \in K$ means: F contains at least one gamble that the subject prefers over 0
So a set of desirable gamble sets can express more general types of uncertainty. It is equivalen to a choice function: $F \in K \Leftrightarrow 0 \notin C(\{0\} \cup F)$. [T. Seidenfeld et al., Coherent choice functions under uncertainty. Synthese 2010]

Rationality axioms A set of desirable gamble sets $K \subseteq \mathscr{Q}$ is coherent if for all F, F_{1} and F_{2} in \mathscr{Q} and all $\left\{\lambda_{f, g}, \mu_{f, g}: f \in F_{1}, g \in F_{2}\right\} \subseteq \mathbb{R}$:
$\mathrm{K}_{0} . \emptyset \notin K$;
$\mathrm{K}_{1} . F \in K \Rightarrow F \backslash\{0\} \in K$;
$\mathrm{K}_{2} .\{f\} \in K$, for all f in $\mathscr{L}_{>0}$
K_{3}. if $F_{1}, F_{2} \in K$ and if, for all f in F_{1} and g in $F_{2},\left(\lambda_{f, g}, \mu_{f, g}\right)>0$, then

$$
\left\{\lambda_{f, g} f+\mu_{f, g} g: f \in F_{1}, g \in F_{2}\right\} \in K
$$

K_{4}. if $F_{1} \in K$ and $F_{1} \subseteq F_{2}$ then $F_{2} \in K$.
Here $\lambda_{1: n}:=\left(\lambda_{1}, \ldots, \lambda_{n}\right)>0$ means ' $\lambda_{k} \geq 0$ for all k, and $\lambda_{\ell}>0$ for at least one ℓ '
Representation For any coherent set of desirable gambles D, let $K_{D}:=\{F \in \mathscr{Q}: F \cap D \neq \emptyset\}$ be the set of desirable gamble sets that represents Walley-Sen maximality.
A set of desirable gamble sets K is coherent if and only if there is a non-empty representing set of coherent sets of desirable gambles \mathbf{D} such that $K=\bigcap_{D \in \mathbf{D}} K_{D}$, and the largest such set is $\mathbf{D}(K):=\left\{D: K \subseteq K_{D}\right\}$
[J. De Bock and G. de Cooman. Interpreting, axiomatising and representing coherent choice functions in terms of desirability. ISIPTA 2019]

Conditioning Given a non-empty event $B \subseteq \Omega$, the conditional set of desirable gamble sets is

$$
K\rfloor B=\left\{F \in \mathscr{Q}(B): \mathbb{I}_{B} F \in K\right\} .
$$

Jeffrey's Rule You have a coherent set of desirable gamble sets K on Ω, and observe a new \breve{K} on the partition \mathscr{B}. We are looking for a coherent set of desirable gamble sets \widehat{K} on Ω tha satisfies the constraints

$$
\cdot \widehat{K} \supseteq \check{K}, \quad[\text { agreeing on } \mathscr{B}] \quad \bullet \widehat{K}\rfloor B \supseteq K\rfloor B \text { for all } B \text { in } \mathscr{B} . \quad \text { [rigidity] }
$$

There is a unique smallest coherent \widehat{K} that satisfies 'agreeing on \mathscr{B} ' and 'rigidity'. It is given by

$$
\left.\widehat{K}=\operatorname{Rs}\left(\operatorname{Posi}\left(\check{K} \cup \bigcup_{B \in \mathscr{B}} \mathbb{I}_{B}(K\rfloor B\right)\right)\right) .
$$

5 Special cases: Jeffrey's Rule for non-additive measures

? Is there a version of Jeffrey's Rule for non-additive measures?

Consider a special class \mathscr{C} of coherent lower probabilities \underline{P}. We lift the domain of \underline{P} to gambles f : $\underline{P}(f):=\min \left\{E(f):(\forall A \subseteq \Omega) E\left(\mathbb{I}_{A}\right) \geq \underline{P}(A)\right\}$.
You have a lower probability $\underline{P} \in \mathscr{C}$ on Ω, and observe a new lower probability $\underline{\mathscr{P}} \in \mathscr{C}$ on \mathscr{B}. You are looking for the least informative lower probability $\widehat{\widehat{P}} \in \mathscr{C}$ such that

- $\underline{\widehat{P}}(B) \geq \underline{\breve{P}}(B)$,
[agreeing on \mathscr{B}]
- $\underline{\widehat{\underline{P}}}(A \mid B) \geq \underline{P}(A \mid B)$,
[rigidity]
for every $A \subseteq \Omega$ and B in \mathscr{B}.
Proposition. Consider $\underline{\widehat{P}} \in \mathscr{C}$. Then $\underline{\widehat{P}}$ satisfies 'agreeing on \mathscr{B} ' and 'rigidity' iff $\underline{\widehat{P}}(f) \geq \underline{\breve{P}}(\underline{P}(f \mid \mathscr{B}))$
for every gamble f.
So in order to answer the question, equivalently: check whether $\underline{\mathscr{P}}(\underline{P}(\cdot \mid \mathscr{B}))$ belongs to \mathscr{C}
Minitive measures Assume that \mathscr{C} is the class of minitive measures \underline{P} :

$$
\underline{P}(A \cap B)=\min \{\underline{P}(A), \underline{P}(B)\}
$$

$\underline{P}(\min \{f, g\})=\min \{\underline{P}(f), \underline{P}(g)\}$
\square
minitivity on events \qquad

2 Sets of desirable gambles

A gamble on Ω is a real-valued map on Ω. It is interpreted as an uncertain reward: if you have f then your capital changes by $f(\omega)$ when $\omega \in \Omega$ is determined.

Desirability A set of desirable gambles D is a set of gambles that the subject prefers over 0 . $f \in D$ means: the subject prefers f over 0 .

Rationality axioms A set of desirable gambles D is coherent if for all gambles f and g and all real $\lambda>0$:
$\mathrm{D}_{1} .0 \notin D$;
[avoiding null gain]
D_{2}. if $0<f$ then $f \in D$;
D_{3}. if $f \in D$ then $\lambda f \in D$;
D_{4}. if $f, g \in D$ then $f+g \in D$.

Conditioning Given a non-empty event $B \subseteq \Omega$, the conditional set of desirable gambles is

$$
D\rfloor B=\left\{f \in \mathscr{L}(B): \mathbb{I}_{B} f \in D\right\}
$$

Jeffrey's Rule You have a coherent set of desirable gambles D on Ω, and observe a new \check{D} on the partition $\mathscr{B}: D$ contains gambles that are constant on the elements of \mathscr{B}. We are looking for a coherent set of desirable gambles \widehat{D} on Ω that satisfies the constraints

- $\widehat{D} \supseteq \check{D}$,
[agreeing on \mathscr{B}]
- $\widehat{D}\rfloor B \supseteq D\rfloor B$ for all B in \mathscr{B}.
[rigidity]

It follows from [G. de Cooman and F. Hermans. Imprecise probability trees: Bridging two theories of imprecise probability. Artificial Intelligence, 2008] that there is a unique smallest coherent \widehat{D} that satisfies 'agreeing on \mathscr{B} ' and 'rigidity'. It is given by

$$
\left.\widehat{D}=\operatorname{posi}\left(\check{D} \cup \bigcup_{B \in \mathscr{B}} \mathbb{I}_{B}(D\rfloor B\right)\right)
$$

4 Example: combination of two decision rules

$$
\begin{aligned}
& \text { finite set of pmfs } \mathscr{M} \subseteq \text { int }\left(\Sigma_{\Omega}\right) \\
& \text { The agent uses maximality: } \\
& K=\left\{F:(\exists f \in F) \min _{p \in \mathscr{M}} E_{p}(f)>0\right\}
\end{aligned}
$$

finite set of pmfs $\bar{M} \subseteq \operatorname{int}\left(\Sigma_{\mathscr{B}}\right)$
The agent uses E-admissibility
$\check{K}=\left\{F:(\forall p \in \breve{M})(\exists f \in F) E_{p}(f)>0\right\}$

? Can we update \mathscr{M} using the new information $\widetilde{\mathscr{M}}$, even if we use different decision rules?

Use Jeffrey's Rule for sets of desirable gamble sets.
In general, the result \widehat{K} of Jeffrey's Rule is represented by

$$
\left.\widehat{\mathbf{D}}:=\left\{\operatorname{posi}\left(\check{D} \cup \bigcup_{B \in \mathscr{B}} \mathbb{I}_{B}(D\rfloor B\right)\right): \check{D} \in \mathbf{D}(\check{K}), D \in \mathbf{D}(K)\right\} .
$$

In the present context, this representation is simplified as

$$
\left.\left\{\operatorname{posi}\left(D_{\check{p}} \cup \bigcup_{B \in \mathscr{A}} \mathbb{I}_{B}\left(D_{\mathscr{M}}\right] B\right)\right): \check{p} \in \widetilde{M}\right\}
$$

and as a consequence
$F \in \widehat{K} \Leftrightarrow(\forall \check{p} \in \widetilde{M})(\exists f \in F) E_{\widetilde{p}}\left(\min _{p \in \mathscr{M}} E_{p}(f \mid \mathscr{B})\right)>0$.
Combination of maximality and E-admissibility

Proposition. a) If \underline{P} and $\underline{\underline{P}}$ are minitive on gambles, then so is $\underline{\underline{P}}(\underline{P}(\cdot \mid \mathscr{B}))$.
b) If \underline{P} or $\underline{\mathscr{P}}$ is minitive on gambles, then $\underline{\mathscr{P}}(\underline{P}(\cdot \mid \mathscr{B}))$ is minitive on events.
c) If \underline{P} nor $\underline{\underline{P}}$ is minitive on gambles, then $\underline{\underline{P}}(\underline{P}(\cdot \mid \mathscr{B}))$ may not be minitive on events.

Distortion models Assume that \mathscr{C} is either one of the classes of \underline{P} that satisfy, for all $A \neq \Omega$:
$\underline{P}(A)=(1-\delta) P(A)$
$\bar{P}(A)=\min \{1,(1+\delta) P(A)\}$
$\underline{P}(A)=\max \{P(A)-\delta, 0\}$

Proposition. For any of the three classes \mathscr{C} of lower probabilities mentioned above: if P and \check{P} belong to \mathscr{C}, then $\underline{\underline{P}}(\underline{P}(\cdot \mid \mathscr{B}))$ may not belong to \mathscr{C}.

Department of Statistics and Operations Research, University of Oviedo, Spain

Department of Philosophy, University of Bristol, UK

