A Study of Jeffrey's Rule With Imprecise Probability Models

The setting

Given You have a finite possibility space Ω and a probability measure P on Ω .

New information You observe a new probability measure \check{P} on a partition \mathscr{B} of Ω .

Question How should you update your probability measure *P* taking into account this information? We are looking for a probability measure P on Ω that satisfies the constraints

• $\widehat{P}(B) = \widecheck{P}(B)$ for all B in \mathscr{B} ,	[agreeing on B]
• $\widehat{P}(A B) = P(A B)$ for all B in \mathscr{B} and $A \subseteq \Omega$.	[rigidity]

The unique probability measure \widehat{P} on Ω that satisfies 'agreeing on \mathscr{B} ' and 'rigidity' **Jeffrey's Rule** is given by

$$\widehat{P}(A) = \sum_{B \in \mathscr{B}} P(A|B) \widecheck{P}(B)$$
 for all $A \subseteq \Omega$

Sets of desirable gambles 2

A gamble on Ω is a real-valued map on Ω . It is interpreted as an uncertain reward: if you have f then your capital changes by $f(\boldsymbol{\omega})$ when $\boldsymbol{\omega} \in \Omega$ is determined.

Desirability A set of desirable gambles *D* is a set of gambles that the subject prefers over 0.

 $f \in D$ means: the subject prefers f over 0.

Rationality axioms A set of desirable gambles D is **coherent** if for all gambles f and g and all real $\lambda > 0$: D_1 . $0 \notin D$; [avoiding null gain] [desiring partial gain] D₂. if 0 < f then $f \in D$; D₃. if $f \in D$ then $\lambda f \in D$; [positive scaling] D₄. if $f, g \in D$ then $f + g \in D$. [combination]

Sets of desirable gamble sets 3

 $\mathscr{Q}(\Omega)$ is the collection of finite subsets of gambles on Ω . A set of desirable gamble sets $K \subseteq \mathscr{Q}$ is a collection of sets F of gambles that contain at least one gamble $f \in F$ that is preferred over 0.

 $F \in K$ means: F contains at least one gamble that the subject prefers over 0.

So a set of desirable gamble sets can express more general types of uncertainty. It is equivalent to a choice function: $F \in K \Leftrightarrow 0 \notin C(\{0\} \cup F)$. [*T. Seidenfeld et al., Coherent choice functions*] under uncertainty. Synthese 2010

Rationality axioms A set of desirable gamble sets $K \subseteq \mathcal{Q}$ is **coherent** if for all F, F_1 and F_2 in \mathscr{Q} and all $\{\lambda_{f,g}, \mu_{f,g} : f \in F_1, g \in F_2\} \subseteq \mathbb{R}$: $K_0. \emptyset \notin K;$ $\mathbf{K}_1. F \in K \Rightarrow F \setminus \{0\} \in K;$ K_2 . $\{f\} \in K$, for all f in $\mathscr{L}_{>0}$; K₃. if $F_1, F_2 \in K$ and if, for all f in F_1 and g in F_2 , $(\lambda_{f,g}, \mu_{f,g}) > 0$, then $\{\lambda_{f,g}f + \mu_{f,g}g : f \in F_1, g \in F_2\} \in K;$ K₄. if $F_1 \in K$ and $F_1 \subseteq F_2$ then $F_2 \in K$. Here $\lambda_{1:n} := (\lambda_1, \dots, \lambda_n) > 0$ means ' $\lambda_k \ge 0$ for all k, and $\lambda_\ell > 0$ for at least one ℓ '.

Representation For any coherent set of desirable gambles D, let $K_D := \{F \in \mathcal{Q} : F \cap D \neq \emptyset\}$ be the set of desirable gamble sets that represents Walley-Sen maximality.

A set of desirable gamble sets K is coherent if and only if there is a non-empty representing set of coherent sets of desirable gambles **D** such that $K = \bigcap_{D \in \mathbf{D}} K_D$, and the largest such set is $\mathbf{D}(K) := \{D : K \subseteq K_D\}.$

[J. De Bock and G. de Cooman. Interpreting, axiomatising and representing coherent choice

a generic D a precise D the vacuous D **Conditioning** Given a non-empty event $B \subseteq \Omega$, the conditional set of desirable gambles is $D \mid B = \{ f \in \mathscr{L}(B) : \mathbb{I}_B f \in D \}.$

Jeffrey's Rule You have a coherent set of desirable gambles D on Ω , and observe a new \check{D} on the partition \mathscr{B} : D contains gambles that are constant on the elements of \mathscr{B} . We are looking for a coherent set of desirable gambles \widehat{D} on Ω that satisfies the constraints

• $\widehat{D} \supseteq \check{D}$, • $\widehat{D} | B \supseteq D | B$ for all B in \mathscr{B} . [agreeing on \mathscr{B}] [rigidity]

It follows from [G. de Cooman and F. Hermans. Imprecise probability trees: Bridging two theories of *imprecise probability. Artificial Intelligence, 2008*] that there is a unique smallest coherent D that satisfies 'agreeing on \mathscr{B} ' and 'rigidity'. It is given by

$$\widehat{D} = \operatorname{posi}\left(\check{D} \cup \bigcup_{B \in \mathscr{B}} \mathbb{I}_B(D \rfloor B)\right).$$

Example: combination of two decision rules 4

finite set of pmfs $\mathscr{M} \subseteq int(\Sigma_{\Omega})$ The agent uses **maximality**: $K = \{F \colon (\exists f \in F) \min_{p \in \mathcal{M}} E_p(f) > 0\}$

finite set of pmfs $\mathcal{M} \subseteq int(\Sigma_{\mathscr{B}})$ The agent uses **E-admissibility**: $\check{K} = \{F \colon (\forall p \in \tilde{\mathscr{M}}) (\exists f \in F) E_p(f) > 0\}$

functions in terms of desirability. ISIPTA 2019

Conditioning Given a non-empty event $B \subseteq \Omega$, the conditional set of desirable gamble sets is $K|B = \{F \in \mathcal{Q}(B) : \mathbb{I}_B F \in K\}.$

Jeffrey's Rule You have a coherent set of desirable gamble sets K on Ω , and observe a new \check{K} on the partition \mathscr{B} . We are looking for a coherent set of desirable gamble sets K on Ω that satisfies the constraints

• $\widehat{K} \supseteq \widecheck{K}$, • $\widehat{K} | B \supseteq K | B$ for all B in \mathscr{B} . [agreeing on \mathscr{B}] [rigidity] There is a unique smallest coherent \widehat{K} that satisfies 'agreeing on \mathscr{B} ' and 'rigidity'. It is given by $\widehat{K} = \operatorname{Rs}\left(\operatorname{Posi}\left(\check{K} \cup \bigcup_{B \in \mathscr{B}} \mathbb{I}_B(K \rfloor B)\right)\right).$

(?) Can we update \mathcal{M} using the new information \mathcal{M} , even if we use different decision rules?

 \dot{Q}^{-1} Use Jeffrey's Rule for sets of desirable gamble sets.

In general, the result \widehat{K} of Jeffrey's Rule is represented by

$$\widehat{\mathbf{D}} := \Big\{ \operatorname{posi}\Big(\check{D} \cup \bigcup_{B \in \mathscr{B}} \mathbb{I}_B(D \rfloor B) \Big) : \check{D} \in \mathbf{D}(\check{K}), D \in \mathbf{D}(K) \Big\}.$$

In the present context, this representation is simplified as

$$\left\{ \operatorname{posi}\left(D_{\breve{p}} \cup \bigcup_{B \in \mathscr{B}} \mathbb{I}_B(D_{\mathscr{M}} \rfloor B)\right) : \breve{p} \in \breve{\mathscr{M}} \right\}$$

and as a consequence

 $F \in \widehat{K} \Leftrightarrow (\forall \check{p} \in \mathscr{M}) (\exists f \in F) E_{\check{p}} (\min_{p \in \mathscr{M}} E_p(f|\mathscr{B})) > 0.$ Combination of maximality and E-admissibility

5 Special cases: Jeffrey's Rule for non-additive measures

(?) Is there a version of Jeffrey's Rule for non-additive measures?

Consider a special class \mathscr{C} of coherent lower probabilities <u>P</u>. We lift the domain of <u>P</u> to gambles f: $\underline{P}(f) := \min\{E(f) : (\forall A \subseteq \Omega) E(\mathbb{I}_A) \ge \underline{P}(A)\}.$

You have a lower probability $\underline{P} \in \mathscr{C}$ on Ω , and observe a new lower probability $\underline{\check{P}} \in \mathscr{C}$ on \mathscr{B} . You are looking for the least informative lower probability $\underline{\widehat{P}} \in \mathscr{C}$ such that

• $\underline{\widehat{P}}(B) \ge \underline{\check{P}}(B)$,

• $\underline{\widehat{P}}(A|B) \ge \underline{P}(A|B)$, [agreeing on *B*]

[rigidity]

Proposition. a) If <u>P</u> and $\underline{\check{P}}$ are minitive on gambles, then so is $\underline{\check{P}}(\underline{P}(\bullet|\mathscr{B}))$. b) If \underline{P} or $\underline{\check{P}}$ is minitive on gambles, then $\underline{\check{P}}(\underline{P}(\bullet | \mathscr{B}))$ is minitive on events. c) If <u>P</u> nor $\underline{\check{P}}$ is minitive on gambles, then $\underline{\check{P}}(\underline{P}(\bullet|\mathscr{B}))$ may not be minitive on events.

Distortion models Assume that \mathscr{C} is either one of the classes of <u>P</u> that satisfy, for all $A \neq \Omega$:

 $\underline{P}(A) = (1 - \delta)P(A) \qquad \overline{P}(A) = \min\{1, (1 + \delta)P(A)\} \quad \underline{P}(A) = \max\{P(A) - \delta, 0\}$ Linear-Vacuous model

Pari-Mutuel model Total Variation model

for every $A \subseteq \Omega$ and B in \mathcal{B} .

Proposition. Consider $\underline{\widehat{P}} \in \mathscr{C}$. Then $\underline{\widehat{P}}$ satisfies 'agreeing on \mathscr{B} ' and 'rigidity' iff $\underline{\widehat{P}}(f) \geq \underline{\check{P}}(\underline{P}(f|\mathscr{B}))$ for every gamble f.

So in order to answer the question, equivalently:

 \dot{Q}^{-} check whether $\check{P}(\underline{P}(\bullet|\mathscr{B}))$ belongs to \mathscr{C} .

Minitive measures Assume that \mathscr{C} is the class of minitive measures <u>P</u>:

 $\underline{P}(A \cap B) = \min\{\underline{P}(A), \underline{P}(B)\}$ minitivity on events $\underline{P}(\min\{f,g\}) = \min\{\underline{P}(f),\underline{P}(g)\}$ minitivity on gambles

Proposition. For any of the three classes \mathscr{C} of lower probabilities mentioned above: if P and \check{P} belong to \mathscr{C} , then $\underline{P}(\underline{P}(\bullet | \mathscr{B}))$ may not belong to \mathscr{C} .

Department of Statistics and Operations Research, University of Oviedo, Spain Universidad de Oviedo

Arthur Van Camp

Department of Philosophy, University of Bristol, UK