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Abstract
Jeffrey’s rule tells us how to update our beliefs about a
probabilitymeasure whenwe have updated information
conditional on some partition of the possibility space,
while keeping the original marginal information on
this partition. It is linked to the law of total probability,
and is therefore connected to the notion of marginal
extension of coherent lower previsions. In this paper,
we investigate its formulation for some other imprecise
probability models that are either more general (choice
functions) or more particular (possibility measures,
distortion models) than coherent lower previsions.
Keywords: Jeffrey’s rule, marginal extension, cohe-
rent lower previsions, sets of desirable gambles, non-
additive measures, choice functions

1. Introduction
Consider a finite possibility space 𝛺, and a partition B
of 𝛺. Given a probability measure 𝑃 on P(𝛺),1 it is
possible to relate the probability 𝑃(𝐴) of any event 𝐴 to the
probabilities 𝑃(𝐵) of the events 𝐵 in the partition B and the
probabilities 𝑃(𝐴|𝐵) conditional on events 𝐵 in B,2 using
the law of total probability:

𝑃(𝐴) =
∑︁
𝐵∈B

𝑃(𝐵)𝑃(𝐴|𝐵).

Suppose that we “observe” a new ‘input’ probability meas-
ure q𝑃 on B. If we now want to obtain a new probability
measure 𝑃 on 𝛺 that satisfies the constraints

• 𝑃(𝐵) = q𝑃(𝐵) for all 𝐵 in B; [agreeing on B]

• 𝑃(𝐴 |𝐵) = 𝑃(𝐴 |𝐵) for all 𝐵 in B and 𝐴 ⊆ 𝛺, [rigidity]

then by the law of total probability

𝑃(𝐴) =
∑︁
𝐵∈B

𝑃(𝐴 |𝐵)𝑃(𝐵) =
∑︁
𝐵∈B

𝑃(𝐴 |𝐵) q𝑃(𝐵)

(Jeffrey’s rule)

1We let P(X) be the power set of its input set X. Elements of P(𝛺)
are called events.

2We assume in this introductory section, for simplicity, that 𝑃 (𝐵) > 0
for every 𝐵 in B, making sure that 𝑃 (𝐴|𝐵) is well defined.

for all 𝐴 ⊆ 𝛺, so the two constraints above are a unique
description of 𝑃 [18, 19].
The equivalent expectation operator version of Jeffrey’s

rule is given by

𝐸 ( 𝑓 ) = q𝐸 (𝐸 ( 𝑓 |B)) for all 𝑓 in L(𝛺)
(Jeffrey’s rule for expectations)

where L(𝛺) is the set of all real-valued maps on 𝛺—called
gambles—and sometimes denoted by L when it is clear
from the context what the domain 𝛺 is.
In this paper, we investigate the formulation of Jeffrey’s

rule in the context of imprecise probabilities. One pro-
minent such connection was already established by Peter
Walley in his celebratedmarginal extension theorem in [41].
He showed that the law of total probability can be exten-
ded to coherent lower previsions in the following manner:
given a coherent lower prevision 𝑃B on the class of B-
measurable gambles and a separately coherent conditional
lower prevision 𝑃(·|B) on L(𝛺), the smallest coherent
lower prevision that is coherent with 𝑃B , 𝑃(·|B) is given
by

𝑃 B 𝑃B (𝑃(·|B)).

This result was later extended to a finite number of con-
ditional lower previsions in [24] and to sets of desirable
gambles in [10, Thm. 3]. In this paper, we shall look at
the formulation of this result for other different families of
imprecise probability models, be it more general or more
specific ones than coherent lower previsions. Given one
such family C, we consider thus a marginal and a condi-
tional model within this family, and look for a global model
that

(a) belongs to the same class C of uncertainty models as
the marginal and conditional, and

(b) is compatiblewith them in the manner we shall specify
later on.

In case there exists such as model, we may then analyse
whether this model is unique, or, if it is not, whether it
is possible to characterise the smallest such model. This
would be a sort of natural extension, with the additional
assumption of compatibility (that perhaps may be stronger
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than usual coherence) and the structural assumption of
being an element of C. When there is no such model, we
may investigate if it is possible to characterise the closest ap-
proximation, for instance using inner approximations. One
minor technical assumption throughout shall be that every
element 𝐵 of B contains at least two elements; otherwise
the conditioning is trivial.
After recalling briefly the formulation of the marginal

extension theorem for sets of desirable gambles in Section 2,
we consider the cases of choice functions (Section 3),
possibility measures (Section 4.1) and distortion models
(Section 4.2). Some additional comments and discussion
will be given in Section 5. Due to a lack of space, we’ve had
to exclude the proofs for our results; we refer the interested
reader to the supplementary material.

2. Jeffrey’s Rule for Sets of Desirable
Gambles

In this sectionwe review themarginal extension theorem [10,
Thm. 3] for sets of desirable gambles, and show how it
implies Jeffrey’s rule for expectations. We will at the same
time establish some of the notation we will need later in
Section 3.
We interpret the set of gambles L as uncertain rewards:

after observing which outcome 𝜔 in 𝛺 occurs, having a
gamble 𝑓 ∈ L changes your capital by 𝑓 (𝜔), expressed in
a predetermined linear utility scale. Gambles 𝑓 are risky
transactions: 𝑓 (𝜔) may be negative, in which case you lose
capital.

Coherent Sets of Desirable Gambles A set of desirable
gambles 𝐷 is a subset of L, which contains the gambles
that a subject—we will refer to the subject as ‘you’—prefers
over the status quo indicated by 0, which is the constant
gamble that leaves your capital unchanged regardless of the
outcome𝜔 in 𝛺. If 𝑓 ≤ 0—bywhich wemean 𝑓 (𝜔) ≤ 0 for
every 𝜔 in 𝛺—then 𝑓 is a gamble that never yields positive
utility. The gambles in L(𝛺)≤0 B { 𝑓 ∈ L : 𝑓 ≤ 0}—also
called L≤0 when it is clear what the domain 𝛺 is—should
therefore never be desirable. On the other hand, if 𝑓 > 0—
by which we mean 𝑓 ≥ 0 and 𝑓 ≠ 0—then 𝑓 can never
make you lose utility, and there is some outcome in which 𝑓
yields a (strictly) positive amount of utility. The gambles
in L(𝛺)>0 B { 𝑓 ∈ L : 𝑓 > 0}—also called L>0 when it
clear what the domain 𝛺 is— should therefore always be
desirable, regardless of your beliefs.
We call a set of desirable gambles 𝐷 on 𝛺 coherent

when [13, 31, 32, 41] when for all 𝑓 and 𝑔 in L and _
in ℝ>0

D1. 0 ∉ 𝐷 ; [avoiding non-positivity]

D2. L>0 (𝛺) ⊆ 𝐷 ; [accepting partial gain]

D3. if 𝑓 ∈ 𝐷 then _ 𝑓 ∈ 𝐷 ; [scaling]

D4. if 𝑓 , 𝑔 ∈ 𝐷 then 𝑓 + 𝑔 ∈ 𝐷 . [combination]

Cylindrical Extension Just as we did for the precise case,
we consider an initial coherent set of desirable gambles 𝐷
on 𝛺, and an ‘input’ coherent set of desirable gambles q𝐷

on B, and will look for suitable reformulation of ‘agreeing
on B’ and ‘rigidity’. In order to do so, we will need to be
able to relate a set of desirable gambles on 𝛺 with one on B.
To this end, we will use the simplifying device of equating
a gamble 𝑓 on B with its cylindrical extension 𝑓★ on 𝛺,
given by:

𝑓★(𝜔) B 𝑓 (𝐵) for the (unique) 𝐵 in B such that 𝜔 ∈ 𝐵

for any 𝜔 in 𝛺. Our not notationally distinguishing
between 𝑓 and its cylindrical extension 𝑓★ will mostly
be harmless for the reader. As q𝐷 consists of gambles on B,
using this device we may interpret q𝐷 as a subset of L(𝛺).
Also, using it we can say that any 𝑓 on B is constant on
the elements of B, by which we mean that for all 𝐵 in B, it
holds that 𝑓★(𝜔) = 𝑓★(𝜔′) for all 𝜔 and 𝜔′ in 𝐵.

Conditioning Sets of Desirable Gambles Given an
event 𝐵 ⊆ 𝛺, we let 𝕀𝐵 be 𝐵’s indicator (gamble), defined
as 𝕀𝐵 (𝜔) B 1 if 𝜔 ∈ 𝐵, and 0 otherwise, for every 𝜔 in 𝛺.
When 𝑓 ∈ L(𝛺), the gamble 𝕀𝐵 𝑓 is a called-off version
of 𝑓 : if 𝐵 obtains, the transaction goes through as described
by 𝑓 , but if 𝐵 does not obtain, the transaction gets cancelled.
We will also use the following notation: given a gamble 𝑓
on 𝐵, we let 𝕀𝐵 𝑓 be the gamble on 𝛺 that takes the value 𝑓
on 𝐵 and 0 elsewhere. Similarly, given a set 𝐹 of gambles
on 𝐵, we let 𝕀𝐵𝐹 B {𝕀𝐵 𝑓 : 𝑓 ∈ 𝐹} be a set of gambles on 𝛺
whose elements agree with the elements of 𝐹 on 𝐵, and are 0
elsewhere. We use this to define the procedure of condition-
ing a set of desirable gambles 𝐷 ⊆ L(𝛺) on an non-empty
event 𝐵 ⊆ 𝛺: the set 𝐷c𝐵 B { 𝑓 ∈ L(𝐵) : 𝕀𝐵 𝑓 ∈ 𝐷 } on
𝐵 contains the called-off gambles that are desirable. This
conditioning rule preserves coherence; we refer to [13] for
more details.

Jeffrey’s Rule We are now in a position to state versions
of ‘agreeing on B’ and ‘rigidity’ in a desirability context,
thereby generalising Jeffrey’s rule to this framework. We
want the result of Jeffrey’s rule to be an ‘output’ coherent set
of desirable gambles 𝐷★ on 𝛺 that satisfies the following
constraints:

• 𝐷★ ⊇ q𝐷; [agreeing on B]

• 𝐷★c𝐵 ⊇ 𝐷c𝐵 for all 𝐵 in B. [rigidity]

“Agreeing on B” here means that we preserve all the as-
sessments about B made by q𝐷. “Rigidity” means that we
preserve all the conditional (on elements of B) assessments

345



Miranda Van Camp

present in the original 𝐷 . There may be multiple 𝐷★ satisfy-
ing these constraints, but there will be a unique smallest one.
The following result is an immediate consequence of [10,
Thm. 3], which is a more general result that holds even for
arbitrary possibility spaces 𝛺.

Theorem 1 The unique smallest 𝐷★ satisfying “agreeing
on B” and “rigidity” is given by

𝐷 B posi
(

q𝐷 ∪
⋃
𝐵∈B

𝕀𝐵 (𝐷c𝐵) ∪ L(𝛺)>0
)
.

(Jeffrey’s rule for desirability)

Here, posi is the operator that returns the smallest convex
cone that includes its input set:

posi(𝐹) B
{ 𝑛∑︁
𝑘=1

_𝑘 𝑓𝑘 : 𝑛 ∈ ℕ, _𝑘 ∈ ℝ>0, 𝑓𝑘 ∈ 𝐹
}

for all 𝐹 ⊆ L. It will be useful later on to establish the
following alternative expression for 𝐷, showing that the
union with L>0 is superfluous in Theorem 1.

Lemma 2 We have that

𝐷 = posi
(

q𝐷 ∪
⋃
𝐵∈B

𝕀𝐵 (𝐷c𝐵)
)
. (1)

Example 1 Let us derive Jeffrey’s rule for expectations as
a special case of Jeffrey’s rule for desirability. Consider
an original expectation operator 𝐸 on L(𝛺) and an input
expectation operator q𝐸 on L(B). We use them to define the
coherent sets of desirable 𝐷 and q𝐷, as

𝐷 B { 𝑓 ∈ L(𝛺) : 𝐸 ( 𝑓 ) > 0 or 𝑓 > 0}

and
q𝐷 B { 𝑓 ∈ L(B) : q𝐸 ( 𝑓 ) > 0 or 𝑓 > 0}.

Jeffrey’s rule for desirability yields a coherent set of de-
sirable gambles 𝐷 on L(𝛺). We will show that the lower
prevision 𝑃

�̂�
associated with 𝐷, defined by

𝑃
�̂�
( 𝑓 ) B sup{𝛼 ∈ ℝ : 𝑓 − 𝛼 ∈ 𝐷} for all 𝑓 in L(𝛺),

satisfies Jeffrey’s rule for expectations: we will show that
𝑃
�̂�
( 𝑓 ) = q𝐸 (𝐸 ( 𝑓 |B)) C 𝐸 ( 𝑓 ) for every 𝑓 in L. To this

end, it suffices to show that 𝐸 ( 𝑓 ) > 0 ⇒ 𝑓 ∈ 𝐷 and
𝑓 ∈ 𝐷 ⇒ 𝐸 ( 𝑓 ) ≥ 0, for every 𝑓 in L.

For the first implication, consider any gamble 𝑓 for
which 𝐸 ( 𝑓 ) > 0, and let 𝛼 B 𝐸 ( 𝑓 )

2 > 0. For every 𝐵 in
B, consider the gambles 𝑓𝐵 : 𝐵 → ℝ : 𝜔 ↦→ 𝑓 (𝜔) and
𝑔𝐵 B 𝑓𝐵 −𝐸 ( 𝑓 |𝐵) +𝛼. The gamble 𝑓𝐵 is the restriction of
𝑓 to 𝐵, so 𝐸 ( 𝑓 |𝐵) = 𝐸 ( 𝑓𝐵 |𝐵), and therefore 𝐸 (𝑔𝐵 |𝐵) =
𝐸 ( 𝑓𝐵 |𝐵) − 𝐸 ( 𝑓 |𝐵) + 𝛼 = 𝛼 > 0, whence 𝑔𝐵 ∈ 𝐷c𝐵. Note
that

𝑓 = 𝐸 ( 𝑓 |B) − 𝛼 + 𝑓 − 𝐸 ( 𝑓 |B) + 𝛼

= 𝐸 ( 𝑓 |B) − 𝛼 +
∑︁
𝐵∈B

𝕀𝐵 ( 𝑓𝐵 − 𝐸 ( 𝑓 |𝐵) + 𝛼)

= 𝐸 ( 𝑓 |B) − 𝛼 +
∑︁
𝐵∈B

𝕀𝐵𝑔𝐵 .

Also, use Jeffrey’s rule for expectations to infer that
q𝐸 (𝐸 ( 𝑓 |B)−𝛼) = q𝐸 (𝐸 ( 𝑓 |B))−𝛼 = 𝐸 ( 𝑓 )−𝛼 =

𝐸 ( 𝑓 )
2 > 0,

whence 𝐸 ( 𝑓 |B) − 𝛼 ∈ q𝐷. So we conclude that

𝑓 = 𝐸 ( 𝑓 |B) − 𝛼︸         ︷︷         ︸
∈ q𝐷

+
∑︁
𝐵∈B

𝕀𝐵 𝑔𝐵︸︷︷︸
∈𝐷 c𝐵

,

whence, indeed, 𝑓 ∈ posi( q𝐷 ∪⋃
𝐵∈B 𝕀𝐵 (𝐷c𝐵)) = 𝐷.

For the second implication, consider any 𝑓 ∈ 𝐷. Then,
using Eq. (1) and taking into account the coherence of q𝐷,
there are 𝑔 in q𝐷, 𝑛 in ℕ,3 𝐵1, . . . , 𝐵𝑛 in B, ℎ1 in 𝐷c𝐵1,
. . . , ℎ𝑛 in 𝐷c𝐵𝑛 and (`, _1, . . . , _𝑛) > 04 such that 𝑓 =

`𝑔 +∑𝑛
𝑘=1 _𝑘 𝕀𝐵𝑘

ℎ𝑘 , which implies that

𝐸 ( 𝑓 ) = q𝐸

(
𝐸

(
`𝑔 +

𝑛∑︁
𝑘=1

_𝑘 𝕀𝐵𝑘
ℎ𝑘

���B))
,

where we used Jeffrey’s rule for expectations. Using the
coherence of 𝐷 , we may assume that all the 𝐵1, . . . , 𝐵𝑛 are
different. Let E B {𝐵𝑘 : 𝑘 ∈ {1, . . . , 𝑛}} ⊆ B, and note
that for any 𝐵ℓ in E

𝐸

(
`𝑔 +

𝑛∑︁
𝑘=1

_𝑘 𝕀𝐵𝑘
ℎ𝑘

���𝐵ℓ ) = `𝑔(𝐵ℓ) + _ℓ𝐸 (ℎℓ |𝐵ℓ)
and for any 𝐵 in B \ E

𝐸

(
`𝑔 +

𝑛∑︁
𝑘=1

_𝑘 𝕀𝐵𝑘
ℎ𝑘

���𝐵) = `𝑔(𝐵).
Hence,

𝐸 ( 𝑓 ) = q𝐸

(
𝐸

(
`𝑔 +

𝑛∑︁
𝑘=1

_𝑘 𝕀𝐵𝑘
ℎ𝑘

���B))
=

𝑛∑︁
ℓ=1

q𝐸 (𝕀𝐵ℓ
)𝐸

(
`𝑔 +

𝑛∑︁
𝑘=1

_𝑘 𝕀𝐵𝑘
ℎ𝑘

���𝐵ℓ )
+

∑︁
𝐵∈B\E

q𝐸 (𝕀𝐵 )𝐸
(
`𝑔 +

𝑛∑︁
𝑘=1

_𝑘 𝕀𝐵𝑘
ℎ𝑘

���𝐵)
=

𝑛∑︁
ℓ=1

q𝐸 (𝕀𝐵ℓ
)
(
`𝑔(𝐵ℓ) + _ℓ𝐸 (ℎℓ |𝐵ℓ)

)
3We let ℕ be the natural numbers {1, 2, 3, . . .}, so we consider 0 not

a natural number.
4For any sequence (`1, . . . , `𝑘 ) of real numbers, by (`1, . . . , `𝑘 ) >

0 we mean ‘`ℓ ≥ 0 for all ℓ in {1, . . . , 𝑘 } and `ℓ > 0 for some ℓ in
{1, . . . , 𝑘 }’.
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+
∑︁

𝐵∈B\E

q𝐸 (𝕀𝐵 )`𝑔(𝐵)

=
∑︁
𝐵∈B

q𝐸 (𝕀𝐵 )`𝑔(𝐵) +
𝑛∑︁
ℓ=1

q𝐸 (𝕀𝐵ℓ
)_ℓ𝐸 (ℎℓ |𝐵ℓ)

= ` q𝐸 (𝑔) +
𝑛∑︁
ℓ=1

_ℓ q𝐸 (𝕀𝐵ℓ
)𝐸 (ℎℓ |𝐵ℓ).

Since ` ≥ 0, q𝐸 (𝑔) ≥ 0, _1 ≥ 0, . . . , _𝑛 ≥ 0, 𝐸 (ℎ1 |𝐵1) ≥ 0,
. . . , 𝐸 (ℎ𝑛 |𝐵𝑛) ≥ 0, we find that, indeed, 𝐸 ( 𝑓 ) ≥ 0. ♦

3. Jeffrey’s Rule for Choice Functions
A set of desirable gambles 𝐷 uniquely determines a binary
preference relation≺ between gambles: 𝑔 ≺ 𝑓 ⇔ 𝑓−𝑔 ∈ 𝐷 ,
for all gambles 𝑓 and 𝑔 [13, 31]. If 𝐷 is coherent, then ≺
is a strict partial order that is also a vector ordering and
is compatible with <.5 Conversely, if ≺ is a strict partial
order that is also a vector ordering compatible with <, then
the set 𝐷 B { 𝑓 ∈ L : 0 ≺ 𝑓 } is a coherent set of desirable
gambles [31, Sect. 1.4.1]. So a set of desirable gambles is
an equivalent representation of a binary preference relation.
This indicates a limitation of working with them: they
can only capture beliefs based on binary preferences—
preferences between two gambles.
In order to overcome this, Kadane et al. [20] have in-

troduced imprecise-probabilistic choice functions, which
were further developed by Seidenfeld et al. [33]. A
choice function 𝐶 identifies from any finite decision prob-
lem 𝐹 ∈ Q(𝛺) B {𝐺 ⊆ L(𝛺) : |𝐺 | ∈ ℕ}—the set Q(𝛺)
is the set of all finite but non-empty subsets of gambles,
which we will also indicate by Q when it is clear from the
context what the domain 𝛺 is—the subset 𝐶 (𝐹) of admiss-
ible, or non-rejected, gambles. Similarly, the corresponding
rejection function 𝑅 (𝐹) B 𝐹 \ 𝐶 (𝐹) identifies the rejected
gambles from 𝐹. Rejection functions may be interpreted
as follows: rejecting a gamble 𝑓 ∈ 𝑅 (𝐹) means that 𝐹
contains another gamble that you prefer to 𝑓 . In order to
make the connection with a useful equivalent model in the
following paragraph, we will impose compatibility with the
vector addition: 𝑓 ∈ 𝑅 (𝐹) ⇔ 𝑓 + 𝑔 ∈ 𝑅 (𝐹 + {𝑔}), for all
𝑓 , 𝑔 ∈ L and 𝐹 ∈ Q, where we defined the addition of sets
of gambles as 𝐺 + 𝐺 ′ B { 𝑓 + 𝑔 : 𝑓 ∈ 𝐺, 𝑔 ∈ 𝐺 ′}, for any
𝐺,𝐺 ′ ⊆ L.

Sets of Desirable Gamble Sets In this paper, we will
work with the equivalent representation of sets of desirable
gamble sets [6, 7, 9]. The idea is to lift the qualification
‘desirable’ from gambles on 𝛺 to finite sets of gambles 𝐹 ∈

5A strict partial order ≺ is an order that is irreflexive and transitive.
Adding the requirement that ≺ is a vector ordering, amounts to imposing
that 𝑓 ≺ 𝑔 ⇔ _ 𝑓 + ℎ ≺ _𝑔 + ℎ for all 𝑓 , 𝑔, ℎ ∈ L and _ ∈ ℝ>0. We
call ≺ compatible with < when 𝑓 < 𝑔⇒ 𝑓 ≺ 𝑔 for all 𝑓 , 𝑔 ∈ L.

Q(𝛺)—called ‘gamble sets (on𝛺)’. A gamble set 𝐹 is called
desirable set when 𝐹 contains a gamble that you prefer to 0,
and a set of desirable gamble sets on 𝛺6 is the collection of
all gamble sets that are desirable: it is a subset 𝐾 ⊆ Q(𝛺).
As such, 𝐾 generalises binary preferences: a gamble set
{ 𝑓 , 𝑔} may be desirable—an element of 𝐾—because you
know that 𝑓 is desirable or 𝑔 is desirable—so you prefer 𝑓
to 0 or you prefer 𝑔 to 0—without being able to identify
which one is. So we see that sets of desirable gamble sets can
disjunctively combine statements of the type ‘this gamble is
desirable’. The set of all sets of desirable gamble sets—all
subsets of Q—will be denoted by K.
Sets of desirable gamble sets 𝐾 are related to rejection

functions 𝑅, and therefore also to choice functions. In order
to describe this relation elegantly, let us follow de Cooman
[9] in defining 𝐹	 𝑓 B (𝐹\{ 𝑓 })−{ 𝑓 }. Then 𝑓 ∈ 𝑅 (𝐹) ⇔
0 ∈ 𝑅 (𝐹− { 𝑓 }) ⇔ (∃𝑔 ∈ 𝐹	 𝑓 )𝑔 is desirable⇔ 𝐹	 𝑓 ∈
𝐾, so we see that 𝑅 and 𝐾 are equivalent representations
of the same information. We use the account of coherence
introduced by [6] and further developed in [7].

Definition 3 (Coherent set of desirable gamble sets) A
set of desirable gamble sets 𝐾 ⊆ Q is called coherent if for
all 𝐹 and 𝐺 in Q, all {_ 𝑓,𝑔 , ` 𝑓,𝑔 : 𝑓 ∈ 𝐹, 𝑔 ∈ 𝐺 } ⊆ ℝ, and
all 𝑓 in L:

K1. ∅ ∉ 𝐾;

K2. if 𝐹 ∈ 𝐾 then 𝐹 \ {0} ∈ 𝐾;

K3. if 𝑓 ∈ L>0 then { 𝑓} ∈ 𝐾;

K4. if 𝐹, 𝐺 ∈ 𝐾 and if, for all 𝑓 in 𝐹 and 𝑔 in 𝐺 ,
(_ 𝑓,𝑔 , ` 𝑓,𝑔) > 0, then {_ 𝑓,𝑔 𝑓 + ` 𝑓,𝑔𝑔 : 𝑓 ∈ 𝐹, 𝑔 ∈
𝐺 } ∈ 𝐾;

K5. if 𝐹1 ∈ 𝐾 and 𝐹1 ⊆ 𝐹2, then 𝐹2 ∈ 𝐾.

We collect all the coherent sets of desirable gamble sets
on 𝛺 in the collection K(𝛺), often simply denoted by K.

Assessments may be given in the form of a subset F ⊆ Q,
which contains gamble sets 𝐹 ∈ F that you think desirable.
If an assessment F ⊆ Q has a coherent extension 𝐾 ⊇ F ,
then we call F consistent. If this is the case, De Bock and de
Cooman [6] have established that there is a unique smallest
coherent extension—called natural extension—which is
given by Rs(Posi(F ∪Ls (𝛺)>0)), where the two operators
Rs and Posi are defined by

Rs(F ) B {𝐹 ∈ Q : (∃𝐺 ∈ F )𝐺 \ L≤0 ⊆ 𝐹}

and

Posi(F ) B
{{ 𝑛∑︁
𝑘=1

_
𝑓1:𝑛
𝑘

𝑓𝑘 : 𝑓1:𝑛 ∈
𝑛?
𝑘=1

𝐹𝑘

}
:

6We sometimes refrain from using ‘on 𝛺’ when it is clear what the
domain 𝛺 of the gambles is.
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𝑛 ∈ ℕ, 𝐹1, . . . , 𝐹𝑛 ∈ F ,
(
∀ 𝑓1:𝑛 ∈

𝑛?
𝑘=1

𝐹𝑘

)
_
𝑓1:𝑛
1:𝑛 > 0

}
for all F in K, and the set Ls (𝛺)>0 B {{ 𝑓 } : 𝑓 ∈
L(𝛺)>0}—often denoted simply by Ls>0.

Representation in Terms of Desirability Given a set
of desirable gamble sets 𝐾, its binary part 𝐷𝐾 B { 𝑓 ∈
L : { 𝑓 } ∈ 𝐾} summarises all the binary preferences present
in 𝐾: 𝐷𝐾 collects the gambles 𝑓 that form desirable gamble
sets { 𝑓 }. If 𝐾 is coherent, then so is 𝐷𝐾 [6, Lem. 18].
Conversely, given a set of desirable gambles 𝐷 , there

may be multiple sets of desirable gamble sets 𝐾 that are
compatible with it, in the sense that𝐷𝐾 = 𝐷 : the non-empty
set {𝐾 ∈ K : 𝐷𝐾 = 𝐷 } may contain more than one element.
However, if 𝐷 is coherent, it always contains one unique
smallest element [37, Prop. 5] 𝐾𝐷 B {𝐹 ∈ Q : 𝐹 ∩ 𝐷 ≠

∅}, which is then equal to ⋂{𝐾 ∈ K : 𝐷𝐾 = 𝐷 }. If we
generalise𝐾𝐷 ’s definition above to arbitrary subsets𝐷 ⊆ L,
then De Bock and de Cooman [7, Prop. 8] have established
that 𝐾𝐷 is coherent if and only if 𝐷 is.
In their same paper, De Bock and de Cooman [7, Thm. 9]

establish the following useful representation result:7

Theorem 4 (Representation [7, Thm. 9]) Any set of de-
sirable gamble sets 𝐾 is coherent if and only if there is a
non-empty set D ⊆ D such that 𝐾 =

⋂
𝐷∈D 𝐾𝐷 . We then

say that D represents 𝐾. Moreover, 𝐾’s largest representing
set is D (𝐾) B {𝐷 ∈ D : 𝐾 ⊆ 𝐾𝐷 }.

The representation result above plays an important role in
the development of the theory of sets of desirable gamble
sets: sometimes, it is easier to find a representing set D of a
coherent set of desirable gamble sets 𝐾, rather than 𝐾 itself.
An instance of a result where the representation proved to be
crucial is the independent natural extension [38, Thm. 15].
That is the reason why we will be also after a representation
of Jeffrey’s rule for choice functions, at the end of this
section.

Cylindrical Extension As before, we will consider an
initial coherent set of desirable gamble sets 𝐾 on 𝛺, and an
‘input’ coherent set of desirable gamble sets q𝐾 on B, and
will look for a suitable reformulation of ‘agreeing on B’
and ‘rigidity’. Before we can do so, we need to relate a
set of desirable gamble sets on 𝛺 with one on B. The
idea will be the same as for sets of desirable gambles:
we will use the simplifying device of equating a gamble
set 𝐹 on B with its cylindrical extension 𝐹★ on 𝛺, given
by 𝐹★ B { 𝑓★ : 𝑓 ∈ 𝐹}. So 𝐹★ collects all the cylindrical
extensions of gambles in 𝐹. As q𝐾 consists of gamble sets
on B, using this device we may interpret q𝐾 as a subset
of Q(𝛺).

7This result first appeared in [6, Thm. 9] but we prefer their later
formulation.

Conditioning Sets of Desirable Gamble Sets Given a set
of desirable gamble sets 𝐾 on 𝛺 and a (non-empty) condi-
tioning event 𝐵 ⊆ 𝛺, we define the conditioned set of desir-
able gamble set 𝐾c𝐵 B {𝐹 ∈ Q(𝐵) : 𝕀𝐵𝐹 ∈ 𝐾} ⊆ Q(𝐵)
as the collection of the called-off versions of gamble sets
present in𝐾. This conditioning rule preserves coherence [37,
Prop. 7]. It furthermore is compatible with the conditioning
rule for sets of desirable gambles: conditioning a cohe-
rent 𝐾 yields a conditioned coherent set of desirable gamble
sets 𝐾c𝐵 that is represented by {𝐷c𝐵 : 𝐷 ∈ D (𝐾)} [38,
Prop. 7].
For further notational streamlining, we define the mul-

tiplication of an indicator 𝕀𝐵 with a subset F ⊆ Q(𝐵)
as 𝕀𝐵F B {𝕀𝐵𝐹 : 𝐹 ∈ F }: it is the collection of called-off
versions of the gamble sets in F .

Jeffrey’s Rule We are now in a position to define ‘agree-
ing on B’ and ‘rigidity’ for sets of desirable gamble sets,
thereby generalising Jeffrey’s rule to sets of desirable gamble
sets, and therefore to choice functions too, after a suitable
translation of the properties and result. We want the result
of Jeffrey’s rule to be an ‘output’ coherent set of desirable
gamble sets 𝐾★ on 𝛺 that satisfies the following constraints:

• 𝐾★ ⊇ q𝐾; [agreeing on B]

• 𝐾★c𝐵 ⊇ 𝐾c𝐵 for all 𝐵 in B. [rigidity]

Here too, “agreeing on B” means that we preserve all
the assessments about B made by q𝐾. “Rigidity” means
that we preserve all the conditional (on elements of B)
assessments present in the original𝐾. Theremay bemultiple
𝐾★ satisfying these constraints, but there will be a unique
smallest one.

Theorem 5 The unique smallest 𝐾★ satisfying “agreeing
on B” and “rigidity” is given by

𝐾 BRs
(
Posi

(
q𝐾 ∪

⋃
𝐵∈B

𝕀𝐵 (𝐾c𝐵) ∪ Ls (𝛺)>0
))

(Jeffrey’s rule for choice functions)

=Rs
(
Posi

(
q𝐾 ∪

⋃
𝐵∈B

𝕀𝐵 (𝐾c𝐵)
))
.

Moreover, 𝐾 is represented by

D̂ B
{
posi

(
q𝐷∪

⋃
𝐵∈B

𝕀𝐵 (𝐷c𝐵)
)
: q𝐷 ∈ D ( q𝐾), 𝐷 ∈ D (𝐾)

}
.

4. Jeffrey’s Rule for Non-Additive Measures
We shift our attention to a number of models that constitute
particular cases of coherent lower previsions: non-additive
measures. For this, recall that a coherent lower prevision
may also be defined on a subset K of the set of all gambles
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L(𝛺); when this subset contains only indicators of events,
it is called a coherent lower probability. On the other
hand, given a coherent lower probability 𝑃 with domain
K ⊆ P(𝛺), the smallest coherent lower prevision 𝐸 on
K ′ ⊇ K that agrees with 𝑃 on K is given by the lower
envelope of

M(𝑃) B {𝑃 : (∀𝐴 ∈ K)𝑃(𝕀𝐴) ≥ 𝑃(𝐴)},

i.e., 𝐸 ( 𝑓 ) = min{𝑃( 𝑓 ) : 𝑃 ∈ M(𝑃)} for every 𝑓 ∈ K ′. It
is called the natural extension of 𝑃 to K ′.
Our starting point in this section shall be a coherent

lower probability q𝑃 on P(B), the events that are finite
unions of elements from the partition B. We also assume
that for each 𝐵 ∈ B, we have a coherent lower probability
𝑃(·|𝐵) on P(𝛺). By considering the above procedure, we
can obtain their respective natural extensions q𝐸 on L(B)
and 𝐸 (·|B) on L(𝛺). Let 𝐸 be the marginal extension of
q𝐸 and 𝐸 (·|B), given by 𝐸 ( 𝑓 ) = q𝐸 (𝐸 ( 𝑓 |B)) for all 𝑓 in
L(𝛺). This yields the following proposition.

Proposition 6 If q𝑃 (𝐵) > 0 for every 𝐵 ∈ B, then

M(𝐸 ) = {𝑃 : (∀𝐴 ∈ P(B))𝑃(𝕀𝐴) ≥ 𝑃(𝐴) and
(∀𝐴′ ⊆ 𝛺, 𝐵 ∈ B)𝑃(𝐴′ |𝐵) ≥ 𝑃(𝐴′ |𝐵)}.

Now, let C be a subfamily of coherent lower probabilities,
and assume that q𝑃 and 𝑃(·|𝐵) belong to C for every 𝐵 ∈ B.
We look then for the joint models �̂� on P(𝛺) such that

(a) �̂� (𝐴) ≥ q𝑃 (𝐴) for every 𝐴 ∈ P(B); [agreeing on B]

(b) �̂� (𝐴′ |𝐵) ≥ 𝑃(𝐴′ |𝐵) for every 𝐵 ∈ B such that
�̂� (𝐵) > 0 and every 𝐴′ ⊆ 𝛺; [rigidity]

(c) �̂� ∈ C,

and in particular, for the smallest such model, if it exists. For
the conditional lower prevision �̂� (·|B) in condition (b),
when �̂� (𝐵) > 0 we use the one determined by Generalised
Bayes Rule (GBR) [41, Sect. 6.4]; when �̂� (𝐵) = 0, given
that the conditional lower prevision determined by GBR is
vacuous and �̂� satisfies coherence with any conditional, we
make �̂� (·|𝐵) = 𝑃(·|𝐵).
Trivially, if the marginal extension 𝐸 belongs to C, it

follows that it is the smallest model satisfying conditions (a)–
(c) above; but, as we shall see, it does not need to be so in
general. In fact, it is not hard to see that properties such
as complete monotonicity are not preserved by marginal
extension in general:

Example 2 Let 𝛺 = {𝜔1, . . . , 𝜔8}, 𝐵 = {𝜔1, . . . , 𝜔4} and
the partition B = {𝐵, 𝐵𝑐}. Let 𝑃(·|𝐵) the precise prevision
associated with the mass function (0.3, 0.15, 0.15, 0.4), and

𝑃(·|𝐵𝑐) the precise prevision associated with the mass
function (0.2, 0.25, 0.25, 0.3). Consider on the other hand
the vacuous lower probability q𝑃 on {𝐵, 𝐵𝑐}. Given the
events 𝐴1 = {𝜔1, 𝜔2, 𝜔5, 𝜔6} and 𝐴2 = {𝜔1, 𝜔3, 𝜔5, 𝜔7},
we get:

• 𝑃(𝐴1 |𝐵) = 0.45 = 𝑃(𝐴1 |𝐵𝑐) ⇒ 𝐸 (𝐴1) = 0.45;

• 𝑃(𝐴2 |𝐵) = 0.45 = 𝑃(𝐴2 |𝐵𝑐) ⇒ 𝐸 (𝐴2) = 0.45;

• 𝑃(𝐴1 ∪ 𝐴2 |𝐵) = 0.6, 𝑃(𝐴1 ∪ 𝐴2 |𝐵𝑐) = 0.7 ⇒ 𝐸 (𝐴1 ∪
𝐴2) = 0.6;

• 𝑃(𝐴1 ∩ 𝐴2 |𝐵) = 0.3, 𝑃(𝐴1 ∩ 𝐴2 |𝐵𝑐) = 0.2 ⇒ 𝐸 (𝐴1 ∩
𝐴2) = 0.2;

This implies that 𝐸 (𝐴1 ∪ 𝐴2) + 𝐸 (𝐴1 ∩ 𝐴2) = 0.8 < 0.9 =
𝐸 (𝐴1) + 𝐸 (𝐴2), whence 𝐸 is not 2-monotone. ♦

On the other hand, anymodel satisfying conditions (a)–(c)
is an inner approximation of the marginal extension:

Proposition 7 Let �̂� be a coherent lower prevision in C.
Then �̂� satisfies conditions (a) and (b) if and only if it is an
inner approximation of the marginal extension q𝐸 (𝐸 (·|B)).

Next, we shall investigate the above problem for different
families of non-additive measures. In this respect, we should
mention that Jeffrey’s rule was already investigated in the
context of belief functions in Refs. [21, 35, 36, 43, 44].
One important difference with our approach is that this
literature uses a different conditioning rule in condition (b)
than ours: while we use the GBR to obtain a conditional
model 𝑃(·|B), works in the framework of belief functions
typically use Dempster’s conditioning [35, 43], coarsening
conditioning [44] or geometric conditioning [35]. However,
these rules do not guarantee coherence between the joint
and the conditional models, which lies at the basis of our
approach. We would thus be making tractable the approach
already discussed by Wagner [39].

4.1. Minitive Measures

We begin by considering the class of minitive measures,
which are those coherent lower probabilities satisfying

𝑃(𝐴1 ∩ 𝐴2) = min{𝑃(𝐴1), 𝑃(𝐴2)} for all 𝐴1, 𝐴2 ⊆ 𝛺.

The conjugate upper probability is a maxitive measure [15].
Similar to our previous comments, Jeffrey’s rule has been

investigated in the context of possibility measures in [3];
the main difference lies in the use of another conditioning
rule (in the case of [3], the product- and min-based rules).
Minitive measures 𝑃 are a particular case of belief func-

tions, which means in particular that they are 2-monotone:
for every pair of events 𝐴1, 𝐴2, they satisfy

𝑃(𝐴1 ∪ 𝐴2) + 𝑃(𝐴1 ∩ 𝐴2) ≥ 𝑃(𝐴1) + 𝑃(𝐴2).
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As a consequence, given a minitive lower probability on
P(𝛺), it follows [see [1] for an overview of this and related
results] from its 2-monotonicity that its natural extension to
L(𝛺) is given by its Choquet integral: if 𝑓 ∈ L(𝛺), then

𝐸 ( 𝑓 ) = inf 𝑓 +
∫ sup 𝑓

inf 𝑓
𝑃({ 𝑓 > 𝑡})𝑑𝑡,

wherewe denoted the level set { 𝑓 > 𝑡} B {𝜔 ∈ 𝛺 : 𝑓 (𝜔) >
𝑡}, and we will later on do similarly for { 𝑓 ≤ 𝑡} B {𝜔 ∈
𝛺 : 𝑓 (𝜔) ≤ 𝑡}.
However, given minitive measures q𝑃 on P(B) and

𝑃(·|𝐵) on P(𝛺) for each 𝐵 ∈ B, the coherent lower
previsions q𝐸 on L(B) and 𝐸 (·|B) defined by natural ex-
tension need not be minitive: as showed in [12, Prop. 7], this
is only the case then the minitive measures are {0, 1}-valued
on events, and in that case they are associated with filters.
Let 𝐸 be the marginal extension of q𝐸 , 𝐸 (·|B). The

following result gives sufficient conditions for 𝐸 to be min-
itive on gambles (that is, 𝐸 ( 𝑓 ∧ 𝑔) = min{𝐸 ( 𝑓 ), 𝐸 (𝑔)} =
𝐸 ( 𝑓 ) ∧ 𝐸 (𝑔) for all gambles 𝑓 and 𝑔, so 𝐸 is a ∧-
homomorphism, where we use ∧ to denote the point-wise
minimum of two gambles: 𝑓 ∧𝑔 is the gamble whose values
are ( 𝑓 ∧ 𝑔) (𝜔) B min{ 𝑓 (𝜔), 𝑔(𝜔)} for every 𝜔 in 𝛺) or
on events.

Proposition 8

1. If q𝐸 , 𝐸 (·|B) are minitive on gambles, then so is 𝐸 .

2. If either q𝐸 or 𝐸 (·|B) is minitive on gambles, then 𝐸 is
minitive on events.

3. If both q𝐸 , 𝐸 (·|B) are minitive on events but not on
gambles, then 𝐸 may not be minitive on events.

The reasoning in the proof of the last item makes it easy
to find examples where both q𝐸 , 𝐸 (·|B) are not minitive
on gambles and yet 𝐸 is minitive on events: take for in-
stance 𝛺 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐵 = {𝑎, 𝑏},B = {𝐵, 𝐵𝑐}, q𝑃 (𝐵) =
0.5, q𝑃 (𝐵𝑐) = 0, 𝑃(·|𝐵) given by 𝑃(𝑎 |𝐵) = 1, 𝑃(𝑏 |𝐵) =

0 and 𝑃(𝑐 |𝐵𝑐) = 0, 𝑃(𝑑 |𝐵𝑐) = 0.5. Then it can be
checked that 𝐸 is minitive on events, with focal elements
{𝑎}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}.
On the other hand, it may also happen that 𝐸 is minitive

on gambles even if 𝐸 (·|𝐵) is only minitive on events (i.e.,
not {0, 1}-valued); a sufficient condition for this is, after de-
noting EB B {𝐵 ∈ B : 𝑃(·|𝐵) not minitive on gambles},
that q

𝐸 (⋃𝐵∈EB 𝐵) = 0. However, it is a consequence of [12,
Prop. 6] that the following statements are equivalent:

(a) 𝑃(·|𝐵) is {0, 1}-valued on events for every 𝐵 ∈ B;

(b) q𝑃 (𝑃(·|B)) is minitive on gambles for every coherent
lower prevision q𝑃 that is minitive on gambles.

When 𝐸 is not minitive on events, it is not hard to find the
smallest coherent lower probability that dominates it and is
minitive. This is a consequence of the following result.

Proposition 9 Let 𝑃 be a coherent lower probability
on P(𝛺). Then the smallest minitive lower probability 𝑃′

on P(𝛺) satisfying 𝑃′(𝐴) ≥ 𝑃(𝐴) for every 𝐴 ⊆ 𝛺 is
given by

𝑃′(𝐴) = 1 −max
𝜔∉𝐴

𝑃({𝜔}). (2)

To conclude this section, we summarise its results as
follows:

• If the class C is that of coherent lower previsions that are
minitive on gambles (that is, ∧-homomorphisms), then
the marginal extension is the smallest model satisfying
conditions (a)–(c).

• If the class C is that of coherent lower previsions that
are minitive on events, then the marginal extension is
the smallest model satisfying conditions (a)–(c) if either
the marginal or the conditional models are also mini-
tive on gambles; otherwise, the smallest such model is
determined by Eq. (2).

4.2. Distortion Models

Next we consider the family of distortion models. These
refer to those imprecise probability models that originate
by distorting a probability measure 𝑃0 using a distortion
function and for some distorting factor 𝛿. They are par-
ticularly relevant in the context of robust statistics [17].
There are several distortion models, such as the pari-mutuel,
linear-vacuous or Kolmogorov models. We refer to [28, 29]
to a comparison of the properties of some of the most
important distortion models. A study of the connection
between Jeffrey’s rule and convex and bi-elastic distortion
models was made by Škulj in [34]. Here, we shall focus on
the linear-vacuous, pari-mutuel and total variation models.

4.2.1. Linear-Vacuous Model

We begin by considering the family of linear-vacuous mod-
els, also referred to as contaminationmodels in the literature.

Definition 10 Let 𝑃0 be a probability measure on 𝛺 and
consider a distortion factor 𝛿 ∈ (0, 1). The associated
linear-vacuous model is given by the lower probability

𝑃(𝐴) =
{
(1 − 𝛿)𝑃0 (𝐴) if 𝐴 ≠ 𝛺

1 otherwise
for all 𝐴 ⊆ 𝛺.

We say then that 𝑃 is determined by (𝑃0, 𝛿).
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Linear-vacuous models (LV models) have been studied
in the context of robust statistics [17]: the set of probability
measures that dominate 𝑃 are the convex combinations
of 𝑃0 with any other probability measure𝑄, with respective
weights (1 − 𝛿) and 𝛿. We shall denote by CLV the class of
linear-vacuous mixtures.
It follows from the definition above that the lower pro-

bability 𝑃 associated with a linear-vacuous model is always
additive on proper subsets of 𝛺: given 𝐴 ⊂ 𝛺, it holds that

𝑃(𝐴) =
∑︁
𝜔∈𝐴

𝑃({𝜔}). (3)

On the other hand, the natural extension from events to
gambles of an LV model 𝑃 determined by (𝑃0, 𝛿) is given
by

𝑃( 𝑓 ) = (1 − 𝛿)𝑃0 ( 𝑓 ) + 𝛿min 𝑓 for all 𝑓 ∈ L.

With these two properties we can establish necessary and
sufficient conditions for the existence of an LV model
that is coherent with the marginal and conditional models,
provided no zero lower probabilities are involved. In that
case, it follows from the introduction to Section 4 that this
LV model is the smallest model satisfying conditions (a)–
(c).

Proposition 11 Consider an LV model q𝐸 on L(B) de-
termined by (𝑃B , 𝛿B) and, for each 𝐵 ∈ B, let 𝐸 (·|𝐵) be
an LV model on L(B) determined by (𝑃𝐵, 𝛿𝐵). Assume that
q𝐸 (𝐵) > 0 for every 𝐵 ∈ B, and that 𝐸 (𝐴|𝐵) > 0 for every
𝐵 ∈ B and non-empty 𝐴 ⊆ 𝐵. Let 𝑃 be the LV model on 𝛺
determined by (𝑃, 𝛿). Then the following are equivalent:

(a) 𝑃 is coherent with q𝐸 , 𝐸 (·|B).

(b) 𝑃( 𝑓 ) = q𝐸 ( 𝑓 ) for every 𝑓 ∈ L(B) and 𝑃(𝕀𝐵 (𝕀{𝜔 } −
𝐸 ({𝜔}|𝐵))) = 0 for every 𝐵 ∈ B and 𝜔 ∈ 𝐵.

(c) 𝛿 = 𝛿B , 𝑃({𝜔}) =
𝐸 ( {𝜔 } |𝐵) (𝛿+𝑃 (𝐵))

1−𝛿 and 𝛿𝐵 =
𝛿+𝛿𝑃 (𝐵)
𝛿+𝑃 (𝐵) for every 𝐵 ∈ B.

It also follows from this proposition that there will be
situations where there is no LV model inducing the same
marginal and conditional models we started with. It is not
hard to show that the class of LV models is not closed under
marginal extension:

Proposition 12 Let 𝑃 be an LV model on L(B) deter-
mined by (𝑃B , 𝛿B), and for every 𝐵 ∈ B let 𝑃(·|𝐵) be an
LV model on 𝛺 determined by (𝑃𝐵, 𝛿𝐵). Then the marginal
extension 𝐸 = q𝐸 (𝐸 (·|B)) does not belong to CLV.

Taking into account Prop. 7, we may consider then the
inner approximations of the marginal extension 𝐸 in the
class of LV models. Inner approximations of coherent

lower probabilities were investigated in [26]; in the case of
distortion models, they are moreover linked with the notion
of centroids of credal sets [25]. In [26, Sect. 3.1] it was
established that the optimal inner approximations, in that
they minimise the distance defined by Baroni and Vicig in
[2] with respect to the original model, can be determined
by considering the maximum value of 𝛿 such that the lower
probability defined by 𝑄(𝐴) B 𝑃 (𝐴)

1−𝛿 for all 𝐴 ⊂ 𝛺, and
𝑄(𝛺) B 1, avoids sure loss. This result is applicable when
the original lower probability is non-zero on any non-trivial
event, which is also an assumption in our Prop. 6.
A word of caution here, though: the marginal extension 𝐸

will not be in general the natural extension of the coherent
lower probability that is its restriction to events, as the
following example shows:

Example 3 Consider 𝛺 = 𝛺1 × 𝛺2, where 𝛺1 =

{𝑎, 𝑏}, 𝛺2 = {𝑐, 𝑑} and let 𝑃0 be the probability measure
with mass function 𝑃0 ({𝑎, 𝑐}) = 0.15, 𝑃0 ({𝑎, 𝑑}) = 0.35,
𝑃0 ({𝑏, 𝑐}) = 0.3 and 𝑃0 ({𝑏, 𝑑}) = 0.2. Consider 𝛿 = 0.1
and consider the marginal and conditional LV models
𝑃(·|𝛺1) and 𝑃𝛺1 it determines, that satisfy 𝑃({𝑎}) =

𝑃({𝑏}) = 0.45, 𝑃({𝑐}|{𝑎}) = 0.27, 𝑃({𝑑}|{𝑎}) =

0.63, 𝑃({𝑐}|{𝑏}) = 0.54, 𝑃({𝑑}|{𝑏}) = 0.36. Given the
marginal extension 𝐸 of these models, it can be checked
that the probability measure 𝑃1 with mass function

𝑃1 ({𝑎, 𝑐}) = 𝑃1 ({𝑏, 𝑑}) = 0.2
𝑃1 ({𝑎, 𝑑}) = 𝑃1 ({𝑏, 𝑐}) = 0.3

satisfies 𝑃1 (𝐴) ≥ 𝐸 (𝐴) for all 𝐴. However, it does not
belong to M(𝐸 ), because for instance 𝑃1 ({𝑑}|{𝑎}) =

0.6 < 𝑃({𝑑}|{𝑎}). ♦

This means that the results in [26] are not immediately
applicable, and should be generalised to the context of
this paper. Considering the results in [26], we conjecture
that there will not be in general a unique optimal inner
approximation of 𝐸 in the class of LV models.

4.2.2. Pari-Mutuel Model

The second distortion model we consider in this paper is
the pari-mutuel model (PMM) [41].

Definition 13 Given a probability measure 𝑃0 and a dis-
tortion factor 𝛿 > 0, the associated pari-mutuel model is
given by 𝑃(𝐴) = min{1, (1 + 𝛿)𝑃0 (𝐴)} for every 𝐴 ⊆ 𝛺.

We shall denote by CPMM the family of pari-mutuel
models, and we refer to [27, 30] for a study of their mathe-
matical properties. It follows from the definition above that
any pari-mutuel model 𝑃 satisfies the following additivity
property:

𝑃(𝐴) < 1⇒ 𝑃(𝐴) =
∑︁
𝜔∈𝐴

𝑃({𝜔}).
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We begin by showing that given a marginal and a con-
ditional pari-mutuel model, there is never a PMM that is
coherent with both of them. In order to establish this, we
shall need to use the expression of the natural extension of
a PMM from events to gambles. It is given by [30, 41]:

𝐸 ( 𝑓 ) = 𝑓𝜏 + (1 + 𝛿)𝑃(( 𝑓 − 𝑓𝜏)+), (4)

where 𝜏 = 𝛿
1+𝛿 , 𝑓𝜏 = sup{𝑥 ∈ ℝ : 𝑃({ 𝑓 ≤ 𝑥}) ≤ 𝜏} and

( 𝑓 − 𝑓𝜏)+ = max{ 𝑓 − 𝑓𝜏 , 0}.

Proposition 14 Consider a PMM 𝑃B on L(B) determ-
ined by (𝑃0, 𝛿B) and for each 𝐵 ∈ B let 𝑃(·|𝐵) be a PMM
on L(B) determined by (𝑃𝐵, 𝛿). Assume that 𝑃B (𝐴) < 1
for every 𝐴 ⊂ 𝛺 and 𝑃(𝐴|𝐵) < 1 for every 𝐵 ∈ B and
𝐴 ⊆ 𝐵. Then there is no PMM 𝑃 on L(𝛺) that is coherent
with 𝑃B , 𝑃(·|B).

Again, we should then look at the inner approximations of
themarginal extension in order to find a suitable formulation
of Jeffrey’s rule for PMMs; we expect that the results in [26,
Sect. 3.2] should be of interest, provided they are suitably
extended from coherent lower probabilities to coherent
lower previsions.

4.2.3. Total Variation Model

The third and final distortion model we consider in this
paper is the one associated with the total variation distance.

Definition 15 Given a probability measure 𝑃0 on 𝛺 and a
distortion factor 𝛿 > 0, the total variation model (TV model)
they determine is given by the coherent lower probability
𝑃(𝐴) = max{𝑃0 (𝐴) − 𝛿, 0}.

We refer to [16] for a study of this model. The family of
total variation models shall be denoted in this paper by CTV.
As was the case with the other two families of distortion

models, the classCTV is not closed undermarginal extension.
To see this, consider two finite spaces 𝛺1, 𝛺2, let 𝑃 be a
probability measure on 𝛺1 and 𝑃(·|𝜔1) be a probability
measure on 𝛺2 for each 𝜔1 ∈ 𝛺1. Let 𝑃0 denote the
probability measure on 𝛺1 × 𝛺2 they determine. Assume
that 𝑃0 ({(𝜔1, 𝜔2)}) > 0 for every (𝜔1, 𝜔2) ∈ 𝛺1×𝛺2, and
take 𝛿1 < min𝐴⊆𝛺1 𝑃(𝐴) and 𝛿𝜔1 < min𝐴⊆𝛺2 𝑃(𝐴|𝜔1).
Then we obtain

𝐸 ({(𝜔1, 𝜔2)}) = q𝐸 (𝐸 ({𝜔2}|𝜔1))
= q𝐸 (𝑃({𝜔2}|𝜔1) − 𝛿𝜔1 𝕀{𝜔1 })
= 𝑃0 ({(𝜔1, 𝜔2)}) − 𝛿𝜔1𝑃({𝜔1}) + 𝛿𝜔1𝛿1

− 𝑃({𝜔2}|𝜔1)𝛿1. (5)

With these considerations in mind, we can build the
following example, which establishes that the class of
TV models is not closed under marginal extension.

Example 4 Consider 𝛺1 = {𝑎, 𝑏}, 𝛺2 = {𝑐, 𝑑}, 𝛿1 =

0.1 = 𝛿𝑎 = 𝛿𝑏 and the probability measure 𝑃0 determ-
ined by

𝑃0 ({(𝑎, 𝑐)}) = 0.15 = 𝑃0 ({(𝑎, 𝑑)})
𝑃0 ({(𝑏, 𝑐)}) = 0.28 𝑃0 ({(𝑏, 𝑑)}) = 0.42.

Let 𝑃, 𝑃(·|𝛺1) be the marginal and conditional probab-
ility measures it determines, and let 𝑃, 𝑃(·|𝛺1) be their
associated TV models. Using Eq. (5), then the marginal
extension 𝐸 = q𝐸 (𝐸 (·|𝛺1)) satisfies

𝐸 ({(𝑎, 𝑐)}) = 0.08 𝐸 ({(𝑎, 𝑑)}) = 0.08
𝐸 ({(𝑏, 𝑐)}) = 0.18 𝐸 ({(𝑏, 𝑑)}) = 0.3.

Therefore, if this was a TV model, it should be associated
with the distortion factor 𝛿 = 0.09 and the probability mass
function (0.17, 0.17, 0.27, 0.39). But that distortion model
gives 𝑃({𝑎} × 𝛺2) = 0.25, 𝑃({𝑏} × 𝛺2) = 0.57, while
𝐸 ({𝑎} × 𝛺2) = 0.2, 𝐸 ({𝑏} × 𝛺2) = 0.6. ♦

With respect to the inner approximations of a coherent
lower probability by means of a TV model, it was showed in
[26] that they correspond to the incenter of the associated
credal set, as defined in [25]. An interesting open question
arises in this way: how can we use this result in the particular
case when our original model is the marginal extension of
two TV models?

5. Conclusions
In an imprecise-probabilistic context, the well-known mar-
ginal extension theorem shows how to combine a marginal
model with conditional ones.We have shown how it also nat-
urally generalises Jeffrey’s rule to sets of desirable gambles,
and have generalised this rule to the even more versatile
framework of sets of desirable gambles, and therefore to
choice functions, too. We then focused on more specific
frameworks, and studied the specific forms the marginal
extension can take in these models. We obtained a charac-
terisation of the marginal extension for minitive measures,
and showed that, perhaps not entirely unexpected, the three
classes of distortion models we considered do not allow for
an expression of the marginal extension within its class.
While in this paper we have only dealt with one marginal

and one conditional model, we may more generally con-
sider the case of a finite number of conditional models on
nested partitions, in which case we expect that an iterative
application of Jeffrey’s rule should provide the joint. While
the marginal extension theorem has been generalised to a
finite number of partitions in [11, 24] and the results on
inner approximations from [26] would also be applicable
to the resulting lower probability, we should be careful in
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our analysis in that Jeffrey’s rule does not comply with
commutativity in general [14, 40].
Concerning the computation of the model, in the case

of the marginal extension of coherent lower previsions,
a representation in terms of the extreme points of the
associated credal set was established in [24]; when we are
interested in obtaining an optimal inner approximation, the
case ofminitivemeasures has been characterised in Sect. 4.1,
while in the case of distortion models the connection with
incenters of credal sets may allow us to use the results
from [25].
Note also that in our compatibility study of Jeffrey’s rule

we have required that any assessment present in the original
models shall also be present in the updated ones; as such,
it is sort of reminiscent of the ideas behind the temporal
coherence considered in [42]. It would also be interesting
to consider this problem from the point of view of belief
revision, taking into account the discussions in [4, 5, 22] in
the precise case. For this, the work in [8] and [21] would
be particularly relevant.
Finally, even if the results above provide some analysis of

the formulation of Jeffrey’s rule within imprecise probability
models, space and time limitations have prevented us from
discussing a number of interesting side topics, such as (a) the
connection with the approaches established in the context
of belief functions under other conditioning rules; (b) the
(non)-uniqueness of the optimal inner approximations; (c)
the study for other imprecise probability models, such as
probability intervals or 2-monotone capacities; and (d) the
extension to infinite spaces. We intend to report on these
problems in future work.
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