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4 Questions in 
10 Minutes

1. How do sets of desirable gamble sets generalize 
sets of desirable gambles?

2. What does this generality add?
3. What is the independent natural extension?

4. What does our paper do and why should you 
care?



Sets of Desirable 
Gambles

• Consider the toss of a coin; we know that 
the coin will land on one of its faces.

• We have a set of possible outcomes: 𝒳 =
Heads, Tails .

• In general, we assume that the set of 
outcomes forms a finite partition. 

• There are continuum-many wagers on the 
outcomes that someone could offer us: 
𝑔(H), 𝑔(T) ∈ ℝ.

• We call the space of all such possible 
wagers ℒ 𝒳 .



Sets of Desirable 
Gambles

• If we assume that an agent is given decision 
problems where their only choice is to accept the 
gamble or decline it (maintain their present level of 
wealth), given assumptions about the decision rule 
the agent uses, we can interpret the subset 𝐷 ⊆
ℒ 𝒳 that the agent is willing to accept as 
representing beliefs about whether the coin will land 
Heads or Tails. 

• These beliefs are closely related to sets of probability 
functions, but not quite equivalent. 

• Assume 𝑔 ∈ 𝐷 ↔ ∀𝑝 ∈ ℳ 𝐸! 𝑔 >
0, “Unanimous Positive Expectation,” where ℳ is a 
set of probability functions defined on 𝒳.

• Then every set of probability functions ℳ
determines a unique set of desirable gambles 𝐷, but 
the converse is not true. [ItIP, 1.6.2]



Sets of Desirable 
Gambles

• Moving from a set of desirable gambles 𝐷 to a credal 
set ℳ", there is information loss in two directions:

1. There are 𝐷s that are not representable by any set 
of real-valued probability functions. (E.g., 
infinitesimal biases.) (But they almost are.) 

2. For any credal set ℳ,ℳ’s convex hull yields the 
same set of desirable gambles. So 𝐷 determines 
the extreme points of ℳ", but leaves the interior 
unspecified. 



Sets of Desirable 
Gamble Sets

• Instead of assuming that an agent is posed binary 
decision problems, we might instead assume that 
they could be offered any finite non-empty option 
set consisting of gambles from ℒ(𝒳): 𝐴 ∈ 𝒬 ℒ 𝒳
iff 𝐴 is finite and nonempty and 𝐴 ∈ 𝒫 ℒ 𝒳 . 

• Which 𝐴 ∈ 𝒬 ℒ 𝒳 contain at least one gamble 
that the agent prefers to the status quo? 

• Answer: the agent’s set of desirable gamble sets! 
𝐾 ⊆ 𝒬 ℒ 𝒳 .



Sets of Desirable 
Gamble Sets

• Sets of desirable gamble sets are equivalent to the 
framework of choice functions, as introduced by 
Seidenfeld, Schervish, and Kadane [CCFuU]. 
[ADBAfCCF, Section 4]

• They generalize sets of desirable gambles in two 
important ways:

1. SDGS are decision-theoretically more informative 
than sets of desirable gambles. 

2. SDGS allow us more (operationally) distinct 
representations of an agent’s beliefs. 



More 
Informative 
about Decision 
Rules

• Suppose we know that an agent’s beliefs about the 
coin toss are well-represented by some credal set ℳ.

• Then you watch a bunch of bookies go up to the 
agent, each offering some gamble 𝑔 ∈ ℒ 𝒳 .

• You observe that the agent accepts all and only the 
gambles that have Unanimously Positive Expectation 
– 𝑔: ∀𝑝 ∈ ℳ 𝐸! 𝑔 > 0.

• Now suppose that there will be a second wave of 
bookies; this time, the bookies will offer arbitrary 
finite option sets 𝐴 ∈ 𝒬 ℒ 𝒳 .

• Question: do you know how the agent will choose in 
this second wave?



More Informative About Decision Rules

• Answer: No! (Maybe this was obvious from the titles of the slides.)

• The agent’s decision rule for binary choices that we observed in the first wave 
underdetermines their decision rule in the more general case. 

• Many decision rules that make distinct judgments in the more general case 
collapse to the observed rule in the binary case. 

• In particular, two of the most-discussed decision rules:

• Maximality: 𝑓 ∈ 𝐶 𝐴 ↔ ∀𝑔 ∈ 𝐴 ∃𝑝 ∈ ℳ 𝐸! 𝑓 ≥ 𝐸! 𝑔

• E-Admissibility: 𝑓 ∈ 𝐶 𝐴 ↔ ∃𝑝 ∈ ℳ ∀𝑔 ∈ 𝐴 𝐸! 𝑓 ≥ 𝐸! 𝑔 both 
collapse to:

• 0 ∈ 𝐶 {0, 𝑔} ↔ ∃𝑝 ∈ ℳ 0 ≥ 𝐸! 𝑔 . 

• Then the binary sets of desirable gamble sets observed in the first wave 
are: 

0, 𝑔 ∈ 𝐾"#$ ↔ 0 ∉ 𝐶 0, 𝑔 ↔ ¬ ∃𝑝 ∈ ℳ 0 ≥ 𝐸! 𝑔
↔ ∀𝑝 ∈ 𝑀 𝐸! 𝑔 > 0
• Which is exactly what you get from Unanimous Positive Expectation.

M + E-Adm

M + Max
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More 
(Operational) 
Representations 
of Belief

A is certain that a coin is 
either double-headed or 
double-tailed, but has no 
idea which; it’s natural to 
want to model A as 
represented by the credal 
set { 1,0 , 0,1 }
(notation: (𝑝#, 𝑝$)).

B is maximally imprecise, or 
vacuous, about the bias of 
the coin. B is represented by 
the set of all probability 
functions defined on the 
outcomes of the coin toss. 



More 
(Operational) 
Representations 
of Belief

• Both A and B’s credal sets generate the same set of 
desirable gambles, namely the vacuous model:

ℒ%& = {𝑔 ∈ ℒ 𝒳 : 𝑔 𝐻 , 𝑔 𝑇 ≥ 0 and (
)

𝑔 𝐻 >
0 or 𝑔 𝑇 > 0 }.
• But, choosing via E-Admissibility, they generate 

different sets of desirable gamble sets. 
1. B’s SDGS is also the vacuous model 𝐾' =

{𝐴 ∈ 𝒬 𝒳 : ∃𝑓 ∈ 𝐴 𝑓 ∈ ℒ%&}.
2. A’s SDGS is not just the vacuous model. It also 

includes sets of gambles like { 1, −100 , 
−100, 1 }.



What is 
Independence?

Our paper includes two independence concepts, each 
of which we think of as intuitively compelling. 

1. Epistemic independence: suppose I’m going to 
learn some proposition (𝐸( ⊂ 𝒴) about the value 
of 𝑌 and I want to know: is there anything I could 
learn about the value of 𝑌 that should change my 
beliefs about 𝑋? If the answer is no, 𝑌 is 
epistemically irrelevant to 𝑋. Epistemic 
independence is the symmetric version of this kind 
of irrelevance: 𝑋 is irrelevant to 𝑌, 𝑌 is irrelevant 
to 𝑋.

• The primary notion of independence we work with in 
our paper is a formalization of this concept in the 
context of sets of desirable gamble sets.



What is 
Independence? 

2. Practical independence: rather than taking it as 
given that you do learn about one of the variables, 
now think of learning as a choice that has a cost. I 
could, right now, make some decision that 
depends on my beliefs about 𝑋 or I could pay 
(literal money, time, effort, anything of value) to 
learn about 𝑌. Should I choose to learn before 
deciding? If there is nothing of value that I am 
willing to exchange to learn about 𝑌 before 
deciding about 𝑋, I judge 𝑌 to be practically 
irrelevant to 𝑋. Practical independence is the 
symmetric version of this irrelevance concept. 

• Teddy Seidenfeld has proposed a formalization of 
this sense of independence [CCFuU], which has also 
been studied in great detail by Jasper De Bock and 
Gert de Cooman [OaNoIPbTS].



“The” 
Independent 
Natural 
Extension

• Suppose we have two partial assessments: 𝐴) and 
𝐴( which reflect, respectively, beliefs about the 
variables 𝑋 and 𝑌.

• In general terms, the idea behind the independent 
natural extension 𝐴 of these assessments is that:
• Marginalized to one of 𝑋 or 𝑌, 𝐴 returns the 

partial assessment 𝐴) or 𝐴(, as appropriate.
• 𝐴 represents 𝑋 as irrelevant to 𝑌 and 𝑌 as 

irrelevant to 𝑋. 
• 𝐴 is the least-informative/least-committal 

coherent assessment (of the same kind as 𝐴)
and 𝐴() which does both of the above. 



“The” 
Independent 
Natural 
Extension

• The intuitive idea is that, given a class of models of 
beliefs with associated coherence conditions and a 
formalized notion of what it means for two variables to 
be mutually irrelevant, the independent natural 
extension represents all of the beliefs that an agent 
must also commit to in order to coherently believe the 
two partial assessments 𝐴3 and 𝐴4 while holding that 𝑋
and 𝑌 are mutually irrelevant.

• Put another way: it collects all and only the beliefs 
common to every model that coherently judges 𝑋 and 𝑌
to be independent while satisfying the partial 
assessments 𝐴3 and 𝐴4.

• “The” is in scare quotes, because there are two degrees 
of freedom:

1. Choice of model class / associated notion of 
coherence. 

2. Choice of independence concept.  



What Our Paper 
Does 

Our paper has two distinct parts.

1. In the first, we build on the work of De Cooman
and Miranda, who identified and proved the form 
that the epistemically independent natural 
extension takes for sets of desirable gambles. We 
extend this same formalization of epistemic 
independence to sets of desirable gamble sets, 
identifying and proving the form that the 
independent natural extension takes in this more 
general model class [IINEfSoDG].
• Our poster focuses on one nice example of the 

kind of extra generality that moving to sets of 
desirable gamble sets buys: we show how to 
independently combine partial assessments on 
two different variables generated, respectively, 
by maximality and E-Admissibility. To the best of 
our knowledge, this is entirely novel. 



What Our Paper 
Does

2. In the second, we hold fixed the model class (sets of 
desirable gamble sets) and contrast two different notions 
of independence that we find intuitively compelling and 
important: the epistemic independence from the first part 
with Teddy Seidenfeld’s practical independence notion.
• In their study of this S-independence, de Bock and de 

Cooman have already shown that epistemic 
independence does not entail S-independence.

• We provide an example (also on the poster!) which 
demonstrates the converse direction: S-independence 
does not entail epistemic independence.

• It is perhaps somewhat surprising that neither of these 
independence notions entails the other. 

• (Although, in light of investigations of violations of 
Good’s Value of Information theorem in IP, perhaps not 
so surprising? E.g., [CFEBB?VoIftIP]) 



Secret Bonus 
Question: 
Should you 
come to our 
poster session?

Answer: left as an exercise to the 
audience.

Independent natural extension for choice functions
Arthur Van Camp
Kevin Blackwell
Jason Konek

A journey through our results by an example

Consider two random variables X and Y .

X2 X Y 2 Y
finite finite

An agent’s beliefs about them is expressed using credal sets MX and MY .

MX ✓ intSX MY ✓ intSY

arbitrary finite

The agent uses maximality for X .
f 2C(A), (8g2A)(9p2MX)Ep(g)Ep( f )

“ f is choiceworthy in A if there is no

gamble g that has higher p-expectation

for every p in MX .”

The agent uses E-admissibility for Y .
f 2C(A), (9p2MY )(8g2 A)Ep(g) Ep( f )

“ f is choiceworthy in A if there is a p in

MY for which f wins against every

gamble g in A.”

How can we model these two different decision rules in one framework?

We use sets of desirable gamble sets.

They are based on choice functions [introduced by Teddy Seidenfeld et al, Coherent Choice

Functions under Uncertainty, Synthese 2010], first formulated by [Jasper De Bock and Gert de

Cooman, A desirability-based axiomatisation for coherent choice functions, SMPS 2018].
A set of desirable gamble sets K collects all the gamble sets that contain desirable gambles:

A 2 K , A contains a gamble that is preferred over 0 , 0 /2 C(A[{0}).

KX based on maximality:
A 2 KX , (9g 2 A)(8p 2 MX)Ep(g) > 0

“Gamble set A is desirable if it contains

a gamble g that has a positive

p-expectation for every p in MX .”

KY based on E-admissibility:
A 2 KY , (8p 2 MY )(9g 2 A)Ep(g) > 0.

“Gamble set A is desirable if for every p
in MY it contains a gamble g with

positive p-expectation.”

Sets of desirable gamble sets can model even more general decision rules.

How can we express an assessment of independence?
We use epistemic independence.

K on X ⇥Y expresses epistemic independence when

margX(KcEY ) = margXK and margY (KcEX) = margY K for all /0 6= EX ✓ X and /0 6= EY ✓ Y .

“Two variables, X and Y , are epistemically independent when learning

about one of the variables doesn’t influence our beliefs about the other.”

How can we combine KX and KY using epistemic independence?

We use the independent natural extension.

K is the independent natural extension of KX and KY if K is the smallest coherent and epistemically independent
set of desirable gamble sets such that margXK = KX and margY K = KY .

A 2 K , (8pY 2 MY )(9g 2 A)(8pX 2 MX)EpX⇥pY (g) > 0
This is, to the best of our knowledge, the first time that E-admissibility and maximality are combined using
independence to obtain a joint decision rule. We used a result in [Gert de Cooman et al, Independent natural

extension, Artificial Intelligence, 2011].

Our paper shows how to combine any finite number of sets of desirable gamble sets using epistemic independence.

Contrasting with S-independence

[Teddy Seidenfeld et al, Coherent Choice Functions under Uncertainty, Synthese 2010] introduced the following
interesting but different independence notion, studied in great detail by [Jasper De Bock and Gert de Cooman, On a

notion of independence proposed by Teddy Seidenfeld, 2021]:

“When X and Y are [S-independent] then it is not reasonable to spend resources in order to use the observed

value of one of them, say X , to choose between options that depend solely on the value of the other variable, Y .”

How does S-independence relate to epistemic independence?
Neither implies the other.

It is clear from the analysis in [Jasper De Bock and Gert de Cooman, On a notion of independence proposed by Teddy

Seidenfeld, 2021] that epistemic independence does not imply S-independence. We show that it is not implied by it:

Coin factory:
Fair

Unfair

DF

H

T

When F : DU

H

T

When U :
With D = posi(I{F}DF +I{U}DU +L>0)
we find that A 2 KD , (9g 2 A)g 2 D
does not satisfy epistemic independence,
but does satisfy S-independence.
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