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A journey through our results by an example

Consider two random variables X and Y .

X∈ X Y ∈ Y
finite finite

An agent’s beliefs about them is expressed using credal sets MX and MY .

MX ⊆ intΣX MY ⊆ intΣY

arbitrary finite

The agent uses maximality for X .
f ∈C(A)⇔ (∀g∈A)(∃p∈MX)Ep(g)≤Ep( f )

“ f is choiceworthy in A if there is no
gamble g that has higher p-expectation

for every p in MX .”

The agent uses E-admissibility for Y .
f ∈C(A)⇔ (∃p∈MY )(∀g∈A)Ep(g)≤Ep( f )

“ f is choiceworthy in A if there is a p in
MY for which f wins against every

gamble g in A.”

How can we model these two different decision rules in one framework?

We use sets of desirable gamble sets.

They are based on choice functions [introduced by Teddy Seidenfeld et al, Coherent Choice
Functions under Uncertainty, Synthese 2010], first formulated by [Jasper De Bock and Gert de
Cooman, A desirability-based axiomatisation for coherent choice functions, SMPS 2018].
A set of desirable gamble sets K collects all the gamble sets that contain desirable gambles:

A ∈ K ⇔ A contains a gamble that is preferred over 0 ⇔ 0 /∈ C(A∪{0}).

KX based on maximality:
A ∈ KX ⇔ (∃g ∈ A)(∀p ∈ MX)Ep(g) > 0

“Gamble set A is desirable if it contains
a gamble g that has a positive

p-expectation for every p in MX .”

KY based on E-admissibility:
A ∈ KY ⇔ (∀p ∈ MY )(∃g ∈ A)Ep(g) > 0.

“Gamble set A is desirable if for every p
in MY it contains a gamble g with

positive p-expectation.”

Sets of desirable gamble sets can model even more general decision rules.

How can we express an assessment of independence?
We use epistemic independence.

K on X ×Y expresses epistemic independence when

margX(K⌋EY ) = margXK and margY (K⌋EX) = margY K for all /0 ̸= EX ⊆ X and /0 ̸= EY ⊆ Y .

“Two variables, X and Y , are epistemically independent when learning
about one of the variables doesn’t influence our beliefs about the other.”

How can we combine KX and KY using epistemic independence?

We use the independent natural extension.

K is the independent natural extension of KX and KY if K is the smallest coherent and epistemically independent
set of desirable gamble sets such that margXK = KX and margY K = KY .

A ∈ K ⇔ (∀pY ∈ MY )(∃g ∈ A)(∀pX ∈ MX)EpX×pY (g) > 0
This is, to the best of our knowledge, the first time that E-admissibility and maximality are combined using
independence to obtain a joint decision rule. We used a result in [Gert de Cooman et al, Independent natural
extension, Artificial Intelligence, 2011].

Our paper shows how to combine any finite number of sets of desirable gamble sets using epistemic independence.

Contrasting with S-independence

[Teddy Seidenfeld et al, Coherent Choice Functions under Uncertainty, Synthese 2010] introduced the following
interesting but different independence notion, studied in great detail by [Jasper De Bock and Gert de Cooman, On a
notion of independence proposed by Teddy Seidenfeld, 2021]:

“When X and Y are [S-independent] then it is not reasonable to spend resources in order to use the observed
value of one of them, say X , to choose between options that depend solely on the value of the other variable, Y .”

How does S-independence relate to epistemic independence?
Neither implies the other.

It is clear from the analysis in [Jasper De Bock and Gert de Cooman, On a notion of independence proposed by Teddy
Seidenfeld, 2021] that epistemic independence does not imply S-independence. We show that it is not implied by it:
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With D = posi(I{F}DF +I{U}DU +L>0)
we find that A ∈ KD ⇔ (∃g ∈ A)g ∈ D
does not satisfy epistemic independence,
but does satisfy S-independence.


