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Abstract
We investigate epistemic independence for choice func-
tions in a multivariate setting. This work is a contin-
uation of earlier work of one of the authors [23], and
our results build on the characterization of choice func-
tions in terms of sets of binary preferences recently
established by De Bock and De Cooman [7]. We ob-
tain the independent natural extension in this frame-
work. Given the generality of choice functions, our
expression for the independent natural extension is
the most general one we are aware of, and we show
how it implies the independent natural extension for
sets of desirable gambles, and therefore also for less
informative imprecise-probabilistic models. Once this
is in place, we compare this concept of epistemic inde-
pendence to another independence concept for choice
functions proposed by Seidenfeld [22], which De Bock
and De Cooman [1] have called S-independence. We
show that neither is more general than the other.
Keywords: choice function, set of desirable gamble
sets, epistemic independence, S-independence, natural
extension

1. Introduction

The framework of sets of desirable gamble sets has incred-
ible expressive power for representing imprecise proba-
bilistic beliefs. A strict generalization of the more familiar
framework of sets of desirable gambles, it also allows us
to model preferences that are not expressible merely by
making binary comparisons between the available options.
The dark side of this great power is that sets of desirable
gamble sets are very difficult to work with; it will generally
be conceptually and computationally intractable to begin
modelling some credal state representing many variables
with a set of desirable gamble sets that expresses the agent’s
beliefs about the entire possibility space. However, it will
frequently be a much more manageable starting point to
begin with some simpler local assessments about various
particular ways of partitioning up the possibility space; the
utility of this approach is greatly dependent on our ability
to usefully combine these assessments into models of the
entire space.

The first step is to show how to combine local assess-
ments on uncertain variables that the agent regards as inde-

pendent, and this is the project of our paper. We investigate
the least informative way of combining these assessments
into a joint set of desirable gamble sets, called the inde-
pendent natural extension. The first few sections of the
paper are devoted to developing the formal and notational
details that we will need to represent the various concepts
at work, recapitulating work by other authors; our novel
contributions begin in Section 5.

2. Sets of Desirable Gamble Sets

Consider a finite possibility space X in which an uncertain
variable X takes values. We denote by L (X ) the set of
all gambles—real-valued functions—on X , often denoted
by L when it is clear from the context what the possibility
space is. We interpret a gamble f as an uncertain reward: if
the actual outcome turns out to be x in X , then the agent’s
capital changes by f (x). For any two gambles f and g, we
write f ≤ g when f (x)≤ g(x) for all x in X , and we write
f < g when f ≤ g and f 6= g. We identify a real constant α

with the (constant) gamble that maps every element of X
to α . We collect all the non-negative gambles—the gambles
f for which f ≥ 0—in the set L (X )≥0 (often denoted by
L≥0), the positive ones—for which f > 0—in L (X )>0
(often denoted by L>0), and the non-positive ones—for
which f ≤ 0—in L (X )≤0 (often denoted by L≤0).

We denote by Q(X ) the set of all finite but non-empty
subsets of L (X ), also denoted by Q when it is clear from
the context what X is. Q is a subset of the power set
P(L ) of L . Elements of Q are the gamble sets.

De Bock and de Cooman [7] established a useful equiv-
alent representation to choice functions, introduced in an
imprecise-probabilistic context by Seidenfeld et al. [22]:

Definition 1 (Set of desirable gamble sets) A set of de-
sirable gamble sets K on X is a subset of Q(X ). We
collect all the sets of desirable gamble sets in K :=P(Q).

The idea is that the set of desirable gamble sets K collects
all the gamble sets that contain at least one gamble that
our agent strictly prefers over the status quo represented
by 0, the gamble that will leave your capital unchanged
whatever the outcome. A set of desirable gamble sets K is
an equivalent representation to a choice function C: they
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are linked by K = {A ∈Q : 0 /∈ C({0}∪A)}. Therefore
all our results will apply for choice functions as well. We
will use sets of desirable gamble sets mainly for practical
reasons: they are easier to work with.

De Bock and De Cooman [7] gave an axiomatization of
coherent sets of desirable gamble sets—sets of desirable
gamble sets of rational agents. We refer to their article for
a justification of the axioms.

Definition 2 (Coherent set of desirable gamble sets) A
set of desirable gamble sets K ⊆Q is called coherent if for
all A, A1 and A2 in Q, all {λ f ,g ,µ f ,g : f ∈ A1,g ∈ A2} ⊆R,
and all f in L :
K0. /0 /∈ K;
K1. A ∈ K⇒ A \{0} ∈ K;
K2. { f} ∈ K, for all f in L>0;
K3. if A1,A2 ∈ K and if, for all f in A1 and g in A2,

(λ f ,g ,µ f ,g) > 0, then {λ f ,g f + µ f ,gg : f ∈ A1,g ∈
A2} ∈ K;

K4. if A1 ∈ K and A1 ⊆ A2 then A2 ∈ K.
We collect all the coherent sets of desirable gamble sets in
the collection K (X ), often simply denoted by K .

In this definition, we let A1 +A2 := { f +g : f ∈ A1,g ∈
A2} be the Minkowski addition of two gamble sets A1 and
A2. For any m and n in N∪{0},1 we define m :n as the set
{m, . . . ,n}, which we take to be the empty set when n < m.
We will use both notations throughout. We denote any se-
quence (λ1, . . . ,λn) by λ1:n, and define λ1:n > 0⇔ ((∀ j ∈
{1, . . . ,n})λ j ≥ 0 and (∃ j ∈ {1, . . . ,n})λ j > 0). In other
words, this means that λ1:n > 0⇔ (λ1:n ≥ 0 and ¬(λ1:n =
0)), where we let ‘≥’ and ‘=’ work point-wisely on
(λ1, . . . ,λn). This short-hand notation is used in item K3 of
this definition where (λ f ,g,µ f ,g)> 0 means ‘λ f ,g ≥ 0 and
µ f ,g ≥ 0, with at least one of the real numbers λ f ,g and µ f ,g
strictly positive’.

Given two sets of desirable gamble sets K1 and K2, we
follow De Bock and De Cooman [7] in calling K1 at most
as informative as K2 if K1 ⊆ K2. The resulting partially
ordered set (K ,⊆) is a complete lattice where intersec-
tion serves the role of infimum, and union that of supre-
mum. De Bock and De Cooman [7, Theorem 8] furthermore
show that the partially ordered set (K ,⊆) of coherent sets
of desirable gamble sets is a complete meet-semilattice:
given an arbitrary family {Ki : i ∈ I} ⊆ K , its infimum
inf{Ki : i ∈ I}=

⋂
i∈I Ki is a coherent set of desirable gam-

ble sets. This allows for conservative reasoning: it makes
it possible to extend a partially specified set of desirable
gamble sets to the most conservative—least informative—
coherent one that includes it. This procedure is called natu-
ral extension:

Definition 3 ([7, Definition 9]) For any assessment A ⊆
Q, we let K(A ) := {K ∈ K : A ⊆ K}. We call the as-

1. We let N be the positive natural numbers. We let R>0 := {x ∈R : x >
0} be the positive real numbers.

sessment A consistent if K(A ) 6= /0, and we then call
clK (A ) :=

⋂
K(A ) the natural extension of A .

One of the main results of De Bock and De Cooman [7] is
their expression for the natural extension:

Theorem 4 ([7, Theorem 10]) Consider any assessment
A ⊆Q. Then A is consistent if and only if /0 /∈ A and
{0} /∈ Posi(L s

>0∪A ). If this is the case, then clK (A ) =
Rs(Posi(L s

>0∪A )).

Here we used the set L s(X )>0 := {{ f} : f ∈
L (X )>0}—often denoted simply by L s

>0—and the fol-
lowing two operations on K defined by Rs(K) := {A ∈
Q : (∃B ∈ K)B \L≤0 ⊆ A} and

Posi(K) :=
{{ m

∑
k=1

λ
f1:m

k fk : f1:m ∈
m×

k=1

Ak

}
: m ∈ N,

A1, . . . ,Am ∈ K,
(
∀ f1:m ∈

m×
k=1

Ak

)
λ

f1:m
1:m > 0

}
for all K in K . Both Rs and Posi are closure operators:
they are extensive, monotone and idempotent.

Binary Choice and Representation A set of desirable
gamble sets K collects all the gamble sets A that contain
at least one gamble that the agent strictly prefers over 0.
For instance, the agent may know that one of { f1, f2} is
preferred over 0, but she may not know which one it is. So
K can represent more than binary choice: indeed, she may
have no preference in the binary choices {0, f1} and {0, f2},
but in the ternary choice {0, f1, f2} reject 0. In this section
we will quickly summarize relevant known results about
the binary choices captured by a set of desirable gamble
sets.

Binary choices can be modelled by a set of desirable gam-
bles which collects all the gambles that the agent prefers
to zero. They were introduced by Seidenfeld et al. [21],
and have been studied extensively by Walley [24, 25],
De Cooman and Quaeghebeur [12], De Cooman and Mi-
randa [11] and Quaeghebeur [18], amongst others. For-
mally, a set of desirable gambles is a subset D ⊆ L of
gambles that are preferred over 0. We collect all the sets of
desirable gambles in D := P(L ).

Definition 5 (Coherent set of desirable gambles) A set
of desirable gambles D is called coherent if for all f and g
in L , and λ and µ in R:
D1. 0 /∈ D;
D2. L>0 ⊆ D;
D3. if f,g ∈ D and (λ ,µ)> 0, then λ f +µg ∈ D.
We collect all the coherent sets of desirable gambles in D .

Just as we did for sets of desirable gamble sets, we call
the set of desirable gambles D1 at most as informative as set
of desirable gambles D2 if D1 ⊆ D2. Here too, the partially
ordered set (D ,⊆) of coherent sets of desirable gamble is
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a complete meet-semilattice. This implies that if a partially
specified set A⊆L can be coherently extended—in other
words, if D(A) := {D ∈D : A⊆D} 6= /0, in which case we
will call A consistent—there is a unique least informative
such extension clD (A) :=

⋂
D(A):

Theorem 6 ([12, Theorem 1]) Consider any assessment
A⊆L . Then A is consistent if and only if L≤0∩posi(A) =
/0. If this is the case, then clD (A) = posi(L>0∪A).

Here, we used the posi operator on D: posi(A) :={
∑

m
k=1 λk fk : m ∈ N, f1:m ∈ Am,λ1:m > 0

}
for all A⊆L .

Theorem 6 implies that the smallest coherent—called
vacuous—set of desirable gamble set is Dv := L>0.

Given a set of desirable gamble sets K, its binary be-
haviour is summarized in the set of desirable gambles
DK := { f ∈ L : { f} ∈ K}; DK contains the gambles f
that form desirable gamble singletons { f} ∈ K.

Conversely, given a coherent set of desirable gambles D,
there might be multiple coherent K that imply the same
binary choices DK that are reflected in D: the non-empty
collection {K ∈K : DK = D} may have more than one
element. However, it always contains one unique small-
est element, which we call KD := {A ∈ Q : A ∩D 6= /0}
[see [23, Proposition 5]]. De Bock and De Cooman [8,
Proposition 8] show that KD is coherent if and only if D is.
We call any set of desirable gamble sets K binary if there is
a set of desirable gambles D such that K =KD . The smallest
coherent—called vacuous—set of desirable gamble sets is
binary, and given by Kv = KDv = {A ∈Q : A∩L>0 6= /0}.

De Bock and De Cooman [7] establish an important
representation result for coherent sets of desirable gamble
sets. They show that any coherent set of desirable gamble
sets K can be represented by a collection D of coherent sets
of desirable gambles:2

Theorem 7 (Representation [8, Theorem 9]) Any set of
desirable gamble sets K is coherent if and only if there
is a non-empty set D ⊆ D of coherent sets of desirable
gambles such that K =

⋂
{KD : D ∈ D}. We then say

that D represents K. Moreover, K’s largest representing
set is D(K) := {D ∈D : K ⊆ KD}.

Note that D(K) is an isotonic set: if D1 ∈ D(K) and
D1 ⊆ D2, then D2 ∈ D(K), for any D1 and D2 in D .

Example 1 Let us give an example of a coherent set
of desirable gamble sets. Consider an arbitrary non-
empty (possibly non-convex) collection M ⊆ ΣX := {p ∈
L (X )≥0 : ∑x∈X p(x) = 1} of probability mass functions
on X , called a credal set.3 Let us associate with it the E-

2. This theorem first appeared in De Bock and De Cooman [7, Theo-
rem 7], but we prefer their later formulation in [8, Theorem 9].

3. ΣX is called the simplex on X : it is the collection of all probability
mass functions on X .

admissible [16, 19]4 choice function CM (A) =
⋃

p∈M { f ∈
A : (∀g ∈ A)Ep( f) ≥ Ep(g) and g 6> f}:5 given any gam-
ble set A, an option f is admissible precisely when there is
some p in M such that f has highest p-expectation in A.
The set of desirable gamble sets KM that corresponds to
this, is given by KM = {A ∈Q : 0 /∈CM ({0}∪A)}=

{
A ∈

Q : A ∩L>0 6= /0 or (∀p ∈M )(∃ f ∈ A)Ep( f) > 0
}

. KM

is the set of desirable gamble sets that corresponds to the E-
admissible choice rule based on M . Let us show that KM is
a coherent set of desirable gamble sets. One way to obtain
this result is by checking that it satisfies all the rationality
requirements from Definition 2, which is a cumbersome
task. Thanks to Theorem 7 there is a much more elegant
way to obtain this: we claim that KM is represented by the
non-empty {Dp : p ∈M } ⊆D , and is therefore coherent.
Here Dp := { f ∈L : f ∈L>0 or Ep( f)> 0} is the set of
gambles that either have a positive p-expectation or are
positive.

Lemma 8 KM is represented by {Dp : p ∈M }.

Jasper De Bock and Gert de Cooman showed us via
private communication that Theorem 7 also allows for a
simpler expression for the natural extension:

Theorem 9 (Due to De Bock & De Cooman) An assess-
ment A ⊆Q is consistent if and only if there is some D in
D such that A ⊆KD . In that case clK (A ) =

⋂{
KD : D ∈

D and A ⊆ KD
}

.

3. Conditioning
Suppose that we have a belief model about X , be it a co-
herent set of desirable gamble sets on X or a coherent
set of desirable gambles on X , or—less generally—a set
of probability mass functions on X . (We can think of a
precise probability as a singleton.) When new information
becomes available in the form of ‘X assumes a value in
some (non-empty) subset E of X’, we can take this into
account by conditioning our belief model on E.

We will let any event, except for the (trivially) impossible
event /0, serve as a conditioning event. We collect the al-
lowed conditioning events in P /0(X ) := {E⊆X : E 6= /0}.
For any E in P /0(X ) and any gamble f on E, we let its
multiplication IE f denote the gamble on X defined by

(IE f )(x) :=

{
f (x) if x ∈ E
0 if x /∈ E

(1)

for all x in X . IE f is the called-off version of f: if E does
not occur, the gamble will yield 0.

4. Although Levi’s notion of E-admissibility was originally concerned
with convex closed sets of probability mass functions [16, Chapter 5],
we impose no such requirement here on the set M .

5. We let Ep( f) := ∑x∈X p(x) f(x) be f’s p-expectation.
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Definition 10 (Conditioning) Given any set of desirable
gamble sets K on X and any E in P /0(X ), we define the
conditional set of desirable gamble sets KcE on L (E) as
KcE := {A ∈Q(E) : IEA ∈ K}, where for any A in Q(E)
and E in P /0(X ), we let IEA := {IEg : g ∈ A} be a set of
called-off gambles.

It follows at once that conditioning preserves the order: if
K1 ⊆ K2 then K1cE ⊆ K2cE. This definition coincides with
the usual definition for sets of desirable gambles, in the
sense that KcE = KDcE , where DcE := { f ∈L (E) : IE f ∈
D} is the set of desirable gambles conditional on E. In order
to elegantly work with KcE’s representation in terms of sets
of desirable gambles, let us define DcE := {DcE : D ∈ D}
for any D ⊆D.

Proposition 11 ([23, Propositions 7 and 8]) Consider
any set of desirable gamble sets K on X and any
conditioning event E in P /0. If K is coherent, then so
is KcE. Furthermore, KcE is represented by D(K)cE,
meaning that KcE =

⋂
{KD : D ∈ D(K)cE}.

Example 2 Let us build on Example 1, and condition
the E-admissible set of desirable gamble sets KM on an
event G in P /0(X ) such that ∑x∈G p(x) > 0 for all p
in M . Then, for any A in Q(X ), we have A ∈ KM cG⇔
IGA ∈ KM , which is equivalent to the requirement that for
any p in M there is some f in A such that Ep(IG f) > 0.
Since Ep|G( f ) = Ep(IG f)/Ep(IG), we have that Ep(IG f)>
0⇔ Ep|G( f)> 0. So the conditional set of desirable gam-
ble sets KM cG is equal to the E-admissible set of desirable
gamble sets K{p|G : p∈M } obtained by an element-wise ap-
plication of Bayes’s rule on M .

4. Multivariate Sets of Desirable Gamble
Sets

In this section, we will generalize the multivariate study
of desirability by De Cooman and Miranda [11] to choice
models. We will provide the linear space of gambles, on
which we define our sets of desirable gamble sets, with a
more complex structure: we will consider the vector space
of all gambles whose domain is a Cartesian product of a
finite number of finite possibility spaces. More specifically,
consider n in N variables X1, . . . , Xn that assume values
in the finite possibility spaces X1, . . . , Xn, respectively.
Belief models about these variables X1, . . . , Xn will be
defined using gambles on X1, . . . , Xn. We also consider
gambles on the Cartesian product×n

k=1 Xk, giving rise to
the ∏

n
k=1|Xk|-dimensional linear space L (×n

k=1 Xk).

Basic Notation & Cylindrical Extension For every non-
empty subset I⊆{1, . . . ,n} of indices, we let XI be the tuple
of variables that takes values in XI :=×r∈I Xr. We will de-
note generic elements of XI as xI or zI , whose components

are xi := xI(i) and zi := zI(i), for all i in I. As we did before,
when I = {k, . . . , `} for some k, ` in {1, . . . ,n} with k ≤ `,
we will use as a shorthand notation Xk:` := (Xk, . . . ,X`), tak-
ing values in Xk:` and whose generic elements are denoted
by xk:` := (xk, . . . ,x`).

We assume that the variables X1, . . . , Xn are logically
independent, meaning that for each non-empty subset I of
{1, . . . ,n}, xI may assume every value in XI .

It will be useful for any gamble f on X1:n, any non-
empty proper subset I of {1, . . . ,n} and any xI in XI , to
interpret the partial map f(xI,·) as a gamble on XIc , where
Ic := {1, . . . ,n}\ I. We will need a way to relate gambles
on different domains:

Definition 12 (Cylindrical extension) Given two dis-
joint and non-empty subsets I and I′ of {1, . . . ,n} and any
gamble f on XI , we let its cylindrical extension f ∗ to XI∪I′

be defined by f ∗(xI,xI′) := f(xI) for all xI in XI and xI′

in XI′ . Similarly, given any set of gambles A ⊆L (XI),
we let its cylindrical extension A∗ ⊆L (XI∪I′) be defined
as A∗ := { f ∗ : f ∈ A}.

Formally, f ∗ belongs to L (XI∪I′) while f belongs to
L (XI). However, f ∗ is completely determined by f and
vice versa: they clearly only depend on the value of XI , and
as such, they contain the same information and correspond
to the same transaction. They are therefore indistinguish-
able from a behavioural point of view.

Remark 13 As in [9, 11], we will frequently use the sim-
plifying device of identifying a gamble f on XI with its
cylindrical extension f ∗ on XI∪I′ , for any disjoint and
non-empty subsets I and I′ of the index set {1, . . . ,n}. This
convention allows us, for instance, to identify L (XI) with
a subset of L (X1:n), and, as another example, for any
set A ⊆L (X1:n), to regard A∩L (XI) as those gambles
in A that depend on the value of XI only. Therefore, for
any event E in P /0(XI) we can identify the gamble IE
with IE×XIc , and hence also the event E with E×XIc .

Marginalization Suppose we have a set of desirable
gamble sets K on X1:n modelling an agent’s beliefs about
the variable X1:n. What is the information that K contains
about XO , where O is some non-empty subset of the index
set {1, . . . ,n}? Marginalization captures this information.

Definition 14 (Marginalization) Given any non-empty
subset O of {1, . . . ,n} and any set of desirable gam-
ble sets K on X1:n, its marginal set of desirable gam-
ble sets margOK on XO is defined as margOK := {A ∈
Q(XO) : A ∈ K}= K∩Q(XO).

It follows at once from Definition 14 that marginalization
preserves the order: if K1 ⊆ K2, then margOK1 ⊆margOK2.
This definition coincides with the usual definition for sets of
desirable gambles, in the sense that margOKD = KmargO D ,
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where margOD := { f ∈L (XO) : f ∈ D}= D∩L (XO).
For notational convenience, we lift the marginalization
operator margO on D to a version on P(D) defined by
margOD := {margOD : D ∈ D} for any D ⊆D.

Proposition 15 ([23, Propositions 9 and 10]) Consider
any set of desirable gamble sets K on X1:n and any
non-empty subset O of {1, . . . ,n}. If K is coherent, then
so is margOK. Furthermore, margOK is represented by
margO(D(K)): margOK =

⋂
{KD : D ∈margO(D(K))}.

Conditioning on Variables In Section 3 we have seen
how we can condition sets of desirable gamble sets on
events. Here, we take a closer look at conditioning in a
multivariate context.

Suppose we have a set of desirable gamble sets K on
X1:n, representing an agent’s beliefs about the value of
X1:n. Assume now that we obtain the information that the
I-tuple of variables XI—where I is a non-empty subset of
{1, . . . ,n}—assumes a value in a certain non-empty sub-
set EI of XI . There is no new information about the other
variables XIc . How can we condition K on this new infor-
mation?

This is a particular instance of Definition 10, with the
following specifications: X = X1:n and E = EI ×XIc .
The indicator IE of the conditioning event E satisfies
IE(x1:n)= IEI (xI) for all x1:n in X1:n, and taking Remark 13
into account, therefore IE = IEI . Equation (1) defines the
multiplication of a gamble f on EI×XIc with IEI to be a
gamble IEI f on X1:n, given by, for all x1:n in X1:n:

IEI f(x1:n) =

{
f(x1:n) if xI ∈ EI

0 if xI /∈ EI
(2)

and the multiplication of IEI with a set A of gambles on EI×
XIc is the set IEI A = {IEI f : f ∈ A} of gambles on X1:n.

Now that we have instantiated all the relevant as-
pects of Definition 10, we see that KcEI = {A ∈Q(EI×
XIc) : IEI A ∈ K}. Proposition 11 guarantees that KcEI is
represented by D(K)cEI = {DcEI : D ∈ D(K)}, where in
this context DcEI = { f ∈L (EI×XIc) : IEI f ∈ D}.

The conditional set of desirable gamble sets KcEI
is defined on gambles on EI ×XIc . However, usually—
see, for instance, [6, 11]—conditioning on information
about XI results in a model on XIc . We therefore consider
margIc(KcEI) = {A ∈Q(XIc) : IEI A ∈K} as the set of de-
sirable gamble sets that represents the conditional beliefs
about XIc , given that XI ∈ EI . Proposition 11 guarantees the
coherence of margIc(KcEI), for any coherent K.

5. Independent Natural Extension

Now that the basic operations of multivariate sets of desir-
able gamble sets—marginalization and conditioning—are

in place, we are ready to look at a simple type of struc-
tural assessment. The assessment that we will consider, is
that of epistemic independence, which we define to be a
symmetrized version of epistemic irrelevance.

Definition 16 (Epistemic (subset) irrelevance)
Consider any disjoint and non-empty subsets I and O
of {1, . . . ,n}. We call XI epistemically (subset) irrelevant
to XO when learning about the value of XI does not
influence or change the agent’s beliefs about XO . A set of
desirable gamble sets K on X1:n is said to satisfy epistemic
subset irrelevance of XI to XO when

margO(KcEI) = margOK for all EI in P /0(XI). (3)

The idea behind this definition is that observing that XI
belongs to EI turns K into the conditioned set of desirable
gamble sets KcEI on EI×XIc . Then requiring that learning
that XI belongs to EI does not affect the agent’s beliefs
about XO amounts to requiring that the marginal models of
K and KcEI be equal.

This definition is a generalization of De Cooman and
Miranda [11]’s definition for sets of desirable gambles.
Besides their use of the less expressive models of sets of
desirable gambles, there is another difference: De Cooman
and Miranda [11] consider epistemic value irrelevance,
which requires the analogue of Equation (3) only for events
of the form EI = {xI}, with xI ∈XI .

De Bock [6, Example 2] shows that the two notions do
indeed come apart: he gives a coherent set of desirable gam-
bles that satisfies epistemic value irrelevance of X1 to X2,
but not epistemic subset irrelevance. Given the connection
between sets of desirable gambles and sets of desirable
gamble sets, this example establishes that the two notions
come apart also in the context of sets of desirable gam-
ble sets. We follow De Bock [6] in considering epistemic
subset-irrelevance to be the more natural of the two irrel-
evance concepts, as it requires all information about the
value of XI to be irrelevant, including partial information
of the form XI ∈ EI , and not only of the form XI = xI .

Definition 17 (Epistemic (subset) independence)
We call X1, . . . Xn epistemically (subset) independent
when learning about the values of any of them does
not influence or change the agent’s beliefs about the
remaining ones: for any two disjoint non-empty subsets I
and O of {1, . . . ,n}, XI is epistemically subset irrelevant
to XO . We call a set of desirable gamble sets K on X1:n
epistemically (subset) independent when

margO(KcEI) = margOK for all EI in P /0(XI) (4)

for all disjoint non-empty subsets I and O of {1, . . . ,n}.

Independence assessments are useful in constructing
joint sets of desirable gamble sets from local ones. Suppose
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we have a coherent set K` of desirable gamble sets on X`,
for each ` in {1, . . . ,n}, and an assessment that the variables
X1, . . . , Xn are epistemically subset independent. Then how
can we combine the coherent local assessments K` and this
structural independence assessment into a coherent set of
desirable gamble sets on X1:n in a way that is as conserva-
tive as possible? If we call any coherent and epistemically
independent K on X1:n that marginalizes to K` for all ` in
{1, . . . ,n} an independent product of K1, . . . Kn, this means
we are looking for the smallest independent product, which
we will call the independent natural extension of K1, . . . Kn,
after De Cooman and Miranda’s [11, Theorem 19]:

Theorem 18 ([11, Theorem 19]) The independent natu-
ral extension of the n coherent sets of desirable gambles
D1 ⊆ L (X1), . . . , Dn ⊆ L (Xn) exists and is given by⊗n

k=1 Dk := posi
(⋃n

j=1 A1:n\{ j}→{ j}∪L (X1:n)>0
)
, where

A1:n\{ j}→{ j} := {IE f : f ∈ D j and E ∈P /0(X1:n\{ j})}
(5)

for any j in {1, . . . ,n}.

The set A1:n\{ j}→{ j} expresses all the epistemic subset in-
dependence assessments from Equation (4), which the inde-
pendent natural extension must satisfy. This is a difference
with the project of [11]: the original theorem [11, Theo-
rem 19] considers the subset A′1:n\{ j}→{ j} := {I{x} f : f ∈
D j and x ∈ X1:n\{ j}},6 expressing the epistemic value
independence assessments. As expected, A′1:n\{ j}→{ j} ⊂
A1:n\{ j}→{ j}, which is consistent with the fact that epis-
temic value independence is a weaker requirement than
epistemic subset independence, but posi(A′1:n\{ j}→{ j}) =

posi(A1:n\{ j}→{ j}),7 resulting in equal independent natural
extensions: the smallest coherent set of desirable gambles
that is epistemically value independent also is epistemically
subset independent. As we will see in Theorem 20, the inde-
pendent natural extension for sets of desirable gamble sets
will be represented by a collection of independent natural
extensions for sets of desirable gambles, and therefore the
smallest independent product for sets of desirable gamble
sets will also coincide for these two notions of indepen-
dence. By default, we will just say ‘epistemic irrelevance’
and ‘epistemic independence’ to indicate their subset vari-
ants.

We will generalize [11, Theorem 19] to sets of desirable
gamble sets. To this end, consider the following counterpart
of Equation (5)

A1:n\{ j}→{ j} :=
{
IEA : A ∈ K j and E ∈P /0(X1:n\{ j})

}
(6)

6. Actually, they define A′1:n\{ j}→{ j} to be the positive linear hull of
what we call A′1:n\{ j}→{ j}; this difference is immaterial.

7. To see this, note that posi(A′1:n\{ j}→{ j}) ⊆ posi(A1:n\{ j}→{ j}) be-
cause posi is a closure operator and hence monotonic. That
also posi(A1:n\{ j}→{ j})⊆ posi(A′1:n\{ j}→{ j}) follows by noting that
A1:n\{ j}→{ j} ⊆ posi(A′1:n\{ j}→{ j}) since IE f = ∑x∈E I{x} f .

for any j in {1, . . . ,n}, with which we build the following
set of desirable gamble sets:

n⊗
j=1

K j := Rs
(

Posi
( n⋃

j=1

A1:n\{ j}→{ j}∪L s(X1:n)>0

))
.

We will show that the independent natural extension—
the smallest independent product—of K1, . . . , Kn is ex-
actly

⊗n
j=1 K j. Before we prove this, it will be useful to

show the following connection between the assessments
A1:n\{ j}→{ j} and A1:n\{ j}→{ j} for the two types of belief
models:

Proposition 19 Consider, for each j in {1, . . . ,n}, a co-
herent set of desirable gambles D j on X j. Then K⊗n

j=1 D j =⊗n
j=1 KD j , so K⊗n

j=1 D j is the smallest element of K that
includes

⋃n
j=1{IEA : A ∈ KD j and E ∈P /0(X1:n\{ j})}.

Theorem 20 (Independent natural extension) Con-
sider, for each j in {1, . . . ,n}, a coherent set of desirable
gamble sets K j on X j. Then the smallest independent
product of K1, . . . , Kn is given by

⊗n
j=1 K j. Fur-

thermore,
⊗n

j=1 K j is represented by
⊗n

j=1 D(K j) :=
{
⊗n

j=1 D j : D1 ∈ D(K1), . . . ,Dn ∈ D(Kn)}.

Theorem 20 establishes that the independent natural ex-
tension

⊗n
j=1 K j can be calculated using the independent

natural extension for sets of desirable gambles, because⊗n
j=1 D(K j) is a representation of

⊗n
j=1 K j. So

⊗n
j=1 K j is

represented by a collection
⊗n

j=1 D(K j) of independent nat-
ural extensions of sets of locally desirable gambles. How-
ever, this does not also imply that the largest representation
D(
⊗n

j=1 K j) of
⊗n

j=1 K j will only consist of such sets of
desirable gambles. Since D(

⊗n
j=1 K j) is an isotonic set, it

will include some maximal8 set of desirable gambles D̂,
because every coherent set of desirable gambles is domi-
nated by a maximal one.9 But De Cooman and Miranda [11,
Proposition 23] have established that any maximal set of
desirable gambles on X1:n is not an independent natural
extension of local sets of desirable gambles on X1, . . . ,
Xn when n = |X1| = |X2| = 2. They leave this question
open for cases where max{n, |Xk| : k ∈ {1, . . . ,n}} ≥ 2.
This means that D(

⊗n
j=1 K j) can indeed contain sets of

desirable gambles that are not the result of an independent
natural extension, and, if the answer to their open question
is ‘yes’, will always contain such sets of desirable gambles.

A useful property of the independent natural extension⊗n
j=1 D j for sets of desirable gambles is that it is asso-

ciative [11, Theorem 20]:
⊗

`∈L1∪L2
D` =

⊗
`1∈L1

D`1 ⊗

8. A maximal set of desirable gambles is an undominated element of
the complete infimum-semilattice (D ,⊆): they are the maximally in-
formative coherent sets of desirable gambles. They are characterized
by the property f ∈ D̂ or − f ∈ D̂, for any non-zero f in L . We refer
to [2, 12] for a proof of this representation and more information.

9. See Couso and Moral [2, Theorem 20] and De Cooman and Quaeghe-
beur [12, Theorem 3] for a proof of this statement.
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⊗
`2∈L2

D`2 for any disjoint non-empty subsets L1 and L2 of
{1, . . . ,n}. This property allows for a modular construction
of the independent natural extension. It implies that our
independent natural extension

⊗n
j=1 K j is associative too:

Proposition 21 (Associativity) Consider, for each j in
{1, . . . ,n} a coherent set of desirable gamble sets K j on
X j, and let L1 and L2 be any disjoint non-empty subsets of
{1, . . . ,n}. Then

⊗
`∈L1∪L2

K` =
⊗

`1∈L1
K`1 ⊗

⊗
`2∈L2

K`2 .

Note that Proposition 21 implies a stronger marginal-
ization property, namely margO

⊗n
j=1 K j =

⊗
j∈O K j for

any non-empty subset O of {1, . . . ,n}. Indeed, by con-
sidering L1 := O and L2 := {1, . . . ,n} \ L1 we find that⊗n

j=1 K j =
⊗

j∈O K j⊗
⊗

j∈L2
K j, so it is the independent

natural extension of two sets of desirable gamble sets⊗
j∈O K j and

⊗
j∈L2

K j. By Theorem 20
⊗n

j=1 K j then in-
deed marginalizes to

⊗
j∈O K j.

A Stronger Independence Requirement In Defini-
tion 17, we defined a set of desirable gamble sets K to
be epistemically independent when Equation (4) holds, or,
in other words, when

A ∈ K⇔ IEA ∈ K, (7)

for all disjoint non-empty subsets I and O of {1, . . . ,n}, E
in P /0(XI) and A in Q(XO). This requires that, if A is a
desirable gamble set, then at least one gamble of {IE f : f ∈
A}= IEA should be preferred to zero, and hence IEA ∈ K.
But one might argue that independence—or indeed, also
irrelevance—should require something stronger, namely
that

EA ·A := {IE f f : f ∈ A} (8)

should belong to K, for every choice of conditioning events
EA := {E f : f ∈A}⊆P /0(XI). The gamble set EA ·A is the
result of multiplying any gamble f in A with its correspond-
ing indicator IE f with E f ∈ EA , so EA ·A contains multi-
plications with (indicators of) different events, rather than
then same event E. This leads to the following stronger in-
dependence requirement, which, as we shall see, has a tight
connection with epistemic independence: We say that K
satisfies the stronger notion of independence if

A ∈ K⇔ EA ·A ∈ K, (9)

for all disjoint non-empty subsets I and O of {1, . . . ,n},
EA ⊆P /0(XI) and A in Q(XO). This is a valid general-
ization of independence in the sense that, for any epistem-
ically independent set of desirable gambles D, the binary
KD satisfies the requirement in Equation (9), too. We this
independence notion at least as compelling as epistemic
independence. As EA may contain only one event E, in
which case EA ·A = {IE f : f ∈ A}= IEA, this requirement
implies the usual requirement of Equation (7). However,
the stronger requirement Equation (9) is satisfied by the
independent natural extension:

Proposition 22 The independent natural extension⊗n
j=1 K j of K1, . . . , Kn satisfies the stronger requirement

of Equation (9). As a consequence, any independent prod-
uct of K1, . . . , K j includes

⋃n
j=1
{

EA ·A : A ∈ K j and EA ⊆
P /0(X1:n\{ j})

}
.

Example 3 Consider for each j in {1, . . . ,n} a credal
set M j ⊆ int(ΣX j),

10 and consider the completely in-
dependent [3, 20] credal set on X1:n given by M :=
{∏n

j=1 p j : p1 ∈M1, . . . , pn ∈Mn}. This credal will gener-
ally be non-convex.

Let us consider the E-admissible set of desirable gam-
ble sets KM , defined in Example 1. Since M marginalizes
to M1, . . . , Mn and satisfies independence, the set of desir-
able gamble sets KM , too, will marginalize to M1, . . . , Mn
and satisfy independence: KM is an independent product
of KM1 , . . . , KMn .

To see that it indeed does satisfy the alternative inde-
pendence requirement of Equation (9), consider any A
in Q(XO) and GA ⊆P /0(XI). Infer for any p in M , f
in A and G f in GA that Ep|G f ( f) = Ep(IG f f )/Ep(IG f ) =

Ep(IG f )Ep( f)/Ep(IG f ) = Ep( f), so that the following
equivalences hold A ∈KM ⇔ (∀p∈M )(∃ f ∈ A)Ep( f ) =
Ep|G f ( f ) > 0⇔ GA ·A ∈ KM , which implies that KM in-
deed satisfies Equation (9).

6. Contrasting Epistemic Irrelevance with
S-Irrelevance

We have chosen to investigate the independent natural ex-
tension of sets of desirable gamble sets according to the
standard that we have called ‘epistemic irrelevance’, but
there are numerous other notions of irrelevance we might
have investigated. One particularly interesting conception
of irrelevance is a notion due to Teddy Seidenfeld [22, Sec-
tion 4] and recently investigated by Jasper De Bock and
Gert de Cooman [1]. The basic idea is that one proposition
is irrelevant to another if the agent doesn’t regard learn-
ing about the first proposition as valuable to decisions that
depend only on whether the second proposition is true [1,
Section 4.1]:

“When two variables, X and Y , are ‘independent’
then it is not reasonable to spend resources in
order to use the observed value of one of them,
say X , to choose between options that depend
solely on the value of the other variable, Y .”

To translate this into a workable definition, consider any par-
tition P of X’s finite possibility space X , and for every ele-
ment E of P , a gamble fE on Y ’s finite possibility space Y .
Then the suggested notion of irrelevance, which De Bock

10. We use the (topological) interior int(ΣX j ) of ΣX j to make sure that
every outcome in X j has a (strictly) positive probability for every
element of M j .
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and De Cooman [1] term S-irrelevance,11 is that an agent
who judges that X is S-irrelevant to Y will be forced to dis-
prefer the composite gamble ∑E∈P IE(X) fE(Y )−ε , which
is the result of paying ε to find out which E∗ in P occurs—
the E∗ such that X ∈E∗—in order to decide to take the gam-
ble fE∗(Y ), to at least one of { fE : E ∈P}. In other words,
{ fE −∑G∈P IG fG + ε : E ∈P} is a desirable gamble set.
De Bock and De Cooman show that this is equivalent to
the requirement

Definition 23 ([1, Definition 9]) We say that X is S-
irrelevant to Y with respect to a coherent set of desirable
gamble sets K if {∑G∈P\{E} IG( fE − fG)+ ε : E ∈P} ∈
K for all partitions P of X , fE ∈L (Y ) for all E in P ,
and ε ∈ R>0. X and Y are called S-independent when X is
S-irrelevant to Y and vice versa.

When X is a binary variable, meaning that X = {x1,x2},
this requirement reduces to {I{x1} f + ε,−I{x2} f + ε} ∈ K,
for all f in L (Y ) and ε ∈ R>0.

S-irrelevance is an intuitively very compelling standard,
which raises a natural question: how is our concept of epis-
temic irrelevance related? It is already clear from De Bock
and De Cooman [1]’s analysis of S-irrelevance that it is
not entailed by our notion of epistemic irrelevance; as they
note [1, Corollary 1], under suitable continuity conditions12

S-irrelevance has the surprising consequence of being mix-
ing, which loosely speaking implies that the set of desirable
gamble sets is represented by a collection of linear previ-
sion. Let us give an explicit example, specialized to our
context.

Example 4 Consider the independent natural extension
K1⊗K2 of two vacuous local models K1 and K2 on X
and Y , respectively. We will show that this is the vacu-
ous Kv on X ×Y . Indeed, Kv marginalizes to K1 and K2,
and it also satisfies the independence requirements of Equa-
tion (7):

A ∈Kv⇔ (∃ f ∈ A) f > 0⇔ (∃ f ∈ A)IE f > 0⇔ IEA ∈Kv,

for any A in Q(X ) and E in P /0(Y ), or A in Q(Y ) and E
in P /0(X ). So Kv is an independent product. Since it is the
smallest coherent set of desirable gamble sets, it is equal
to Kv = K1⊗K2.

Let us show that K1⊗K2 does not satisfy S-irrelevance,
and therefore also not S-independence. To this end, as-
sume that both X = {x1,x2} and Y = {y1,y2} are binary.
Consider the gamble f := ( f1(x1), f1(x2)) = (1,−1), any y
in Y , and ε := 1

2 > 0. The gamble set {I{y} f + ε,−I{y} f +
ε} does not contain a positive gamble, and therefore be-
longs not to K1⊗K2. This means that K1⊗K2 does not
satisfy S-independence between X and Y .

11. After ‘Seidenfeld’.
12. They are Archimedeanity and “credible indeterminacy”, which im-

plies that all the probabilites are positive.

As far as we know, however, whether S-irrelevance en-
tails our standard of epistemic irrelevance has not yet been
shown. In the following section, we develop an example
which shows that it is possible to satisfy S-irrelevance while
flouting (both value and subset) epistemic irrelevance. Thus,
neither S- nor epistemic irrelevance entails the other.

Violating Epistemic Irrelevance While Satisfying S-
Irrelevance There are two general ways we suspect it
is possible to violate epistemic subset irrelevance while sat-
isfying S-irrelevance. A variable X fails to be epistemically
irrelevant to a variable Y just in case A ∈ K but IEA /∈ K, or
IEA ∈K but A /∈K, for some E in P /0(X ) and A in Q(Y ).

In essence, there is some proposition about the value
of X that the agent can learn which will change their views
about the preferences for some gambles that depend only
on Y . The question we are interested in is whether there is
a way for an agent who knows that learning E will change
their views about the preferences between these gambles to
not place any real monetary value on learning it. There are
at least two ways that it occurs to us that this could happen:
• the agent thinks that there is no real value gained by using

the informed strategy over merely accepting a wager
without learning;

• the agent is certain that the experiment they are (not) pay-
ing for will not yield the outcome which would change
their desires.
In the present paper, we leave the latter kind of case as a

conjecture. In this section, we develop an example of the
former. The framework of sets of desirable gamble sets (and
indeed, the less expressive framework of sets of desirable
gambles) is capable of representing an agent as believing
that one outcome is infinitesimally more likely than another.
In the multivariate arena, this raises the possibility of cor-
relations that generate only infinitesimal change in belief.
Information that generates such an infinitesimal change will
not have any real expected value as long as the gambles that
are at issue have only finite value, which is consistent with
S-irrelevance; Nonetheless, learning the information does
make an identifiable change to which gambles the agent
finds desirable, and thus subset irrelevance is violated.

Example 5 A factory produces two kinds of coins: coins
that are fair (heads and tails are equally likely) and coins
that are infinitesimally biased in favor of heads (heads
is more likely than tails but not by any definite amount).
Consider an agent who knows that a coin produced by this
factory is about to be flipped; the above description of the
factory is all they know. They have no beliefs about the
proportion of coins of each type the factory produces, or
any specific reason to believe that the coin in question is of
one type or the other.

The agent is offered the following decision problem: they
can accept a wager that pays some real payout a if the coin
lands heads and −a if tails, they can decline the wager
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(maintain the status quo, accept the zero gamble), or they
can pay some small (real-valued) fee ε > 0 to learn the
type of the coin, and then decide whether to accept or
reject the (a,−a) wager. Let X take values in X := {F,U}
representing whether the coin is fair or unfair and let Y
take values in Y := {H,T} representing whether the coin
lands heads or tails. For ease of future reference, we denote
D1 := { f : f ∈ L (Y ) and f(H) + f(T ) > 0} and D2 :=
{ f : f ∈L (Y ) and ( f(H)+ f(T )> 0 or ( f(H)+ f(T ) =
0 and f(H)> f(T )))}. Note that D1 and D2 are coherent
sets of desirable gambles.

We model the agent’s beliefs by I{F}D1 ∪ I{U}D2’s
natural extension D := posi(I{F}D1 ∪ I{U}D2 ∪L (X ×
Y )>0).

Lemma 24 D is a coherent set of desirable gambles.
Moreover, it is no independent product, and it therefore
fails epistemic irrelevance from X to Y .

So D—and therefore KD , which is coherent since D is—
fails to satisfy epistemic value irrelevance, and therefore
also epistemic subset irrelevance. However, despite this
difference in desirability dependent on learning about X,
there is no positive value ε that the agent will be willing
to pay to learn the bias before deciding whether to accept
or reject a gamble on the outcome of the flip, so a gamble
on Y . More generally, there are no gambles f and g on Y
such that the agent would pay to learn the bias of the coin
before deciding between f and g.

To show this formally, we consider KD and show that it
satisfies S-irrelevance:

Lemma 25 X is S-irrelevant to Y with respect to KD .

Thus, we have a case where X is not epistemically irrele-
vant to Y , but X is S-irrelevant to Y . The upshot is that there
are cases where learning about a variable X makes an iden-
tifiable change to which gambles, defined only on Y , an
agent prefers, but the agent sees this difference as negligible
in (real) value.

7. Discussion
Independence is an interesting concept. When we model un-
certainty with precise probabilities, it seems univocal. But
when we model uncertainty with imprecise probabilities, it
fractures into a multiplicity of distinct concepts, including:
• complete independence for sets of probabilities [3, 20];
• independence in selection for lower previsions [10];
• strong independence for lower previsions and sets of

desirable gambles [11];
• epistemic independence (value and subset) for sets of

desirable gambles [17];
• epistemic h-independence for lower previsions and credal

sets [6];
• S-independence for choice functions [1];

These concepts collapse in the limit, when applied to pre-
cise probabilities, but come apart in general.

Independence is also an important concept. For exam-
ple, many have thought that when pooling expert opinions
we ought to preserve unanimous judgments of indepen-
dence [14, 15, 13]. Take another example: causal modelling.
Causal Bayesian networks consist of a directed acyclic
graph together with an appropriate probability distribu-
tion. They are popular formal tools for modelling causal
relationships. Independence judgments play a key role in
constructing causal Bayes nets. Missing edges between
variables in the graph of a causal Bayes net indicate that
those variables are causally independent of one another.

In this paper we investigated epistemic independence in
the general framework of sets of desirable gamble sets. Our
results indicate that the independent natural extension can
be calculated by performing the eponymous operation on
a representing collection of sets of desirable gambles, but
this collection may be infinite.

In addition, we took some initial steps to compare epis-
temic independence with another attractive notion of inde-
pendence proposed by Teddy Seidenfeld: S-independence.
Recently, Jasper De Bock and Gert de Cooman [1, Corol-
lary 1] showed that if an Archimedean set of desirable
gamble sets renders a variable X “credibly indeterminate”,
then judging that X is S-irrelevant to Y forces you to choose
between gambles on Y using E-admissibility. Judgments of
S-irrelevance, it turns out, are much more informative than
they appear at first glance.

There are still a number of open questions about epis-
temic independence for sets of desirable gamble sets. For
example, Cozman and Seidenfeld [5] explore the notion
of layer independence for full conditional probability mea-
sures. Cozman [4] shows that the only extant concept of
independence for (non-convex) sets of probabilities that has
a range of desirable graphoid properties is element-wise
layer independence. It is an open question what additional
structural constraints on coherent sets of desirable gam-
ble sets are necessary and sufficient to secure the relevant
graphoid properties.

As sets of desirable gamble sets generalize many of the
extant imprecise-probabilistic uncertainty models, includ-
ing sets of desirable gambles, lower previsions, and sets of
probability mass functions, they may be expressive enough
to unify some of the aforementioned independence con-
cepts. Example 3 is one instance of this, where we show
that an E-admissible set of desirable gamble sets based on
a completely independent credal set is an (epistemically)
independent product. We suspect Proposition 22 to be help-
ful in the connection with some of the other independence
concepts. We intend to investigate these connections, with
the hope to obtain a unifying theory.
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Supplementary Material: Proofs
Proof [Proof of Lemma 8] We will show that (i) KM ✓

T
{KDp : p 2M } and (ii) KM ◆

T
{KDp : p 2M }. For (i), consider

any A in KM , meaning that A \L>0 6= /0 or (8p 2 M )(9 f 2 A)Ep( f )> 0. Both cases imply that A \Dp 6= /0 for every p
in M , whence indeed A 2

T
{KDp : p 2 M }. For (ii), consider any A in

T
{KDp : p 2 M }, meaning that A\Dp 6= /0 for all

p in M , and hence indeed A 2 KM .

Proof [Proof of Proposition 19] We will show that (i) KNn
j=1 D j ✓

Nn
j=1 KD j and (ii) KNn

j=1 D j ◆
Nn

j=1 KD j .
For (i), consider any A in KNn

j=1 D j . Then A \
Nn

j=1 D j 6= /0, so let f 2 A belong to
Nn

j=1 D j. Then f 2 L (X1:n)>0—
in which case A 2

Nn
j=1 KD j by coherence—or f � Âm

k=1 lk fk for some m in N, f1, . . . , fm in
Sn

j=1 A1:n\{ j}!{ j}
and m real coefficients l1:m > 0. But then, for every k in {1, . . . ,m}, the gamble set Ak := { fk} belongs to
Sn

j=1 A1:n\{ j}!{ j}. Let furthermore l f1:m
1:m := l1:m > 0 for the unique—and hence all— f1:m in⇥m

k=1 Ak. This implies
that {Âm

k=1 fk} =
�

Âm
k=1 l f1:m

k fk : f1:m 2⇥m
k=1 Ak

 
belongs to Posi(

Sn
j=1 A1:n\{ j}!{ j}) and since f � Âm

k=1 fk, also
{ f} 2 Posi(

Sn
j=1 A1:n\{ j}!{ j}[L s(X1:n)>0). Since f 2 A, we have that then indeed A 2

Nn
j=1 KD j .

For (ii), consider any A in
Nn

j=1 KD j . Then A ◆ B \L (X1:n)0 for some B in Posi(
Sn

j=1 A1:n\{ j}!{ j}[L s(X1:n)>0),
meaning that B = {Âm

k=1 l f1:m
k fk : f1:m 2⇥n

k=1 Bk} for some m in N, B1, . . . , Bm in
Sn

j=1 A1:n\{ j}!{ j}[L s(X1:n)>0 and,
for every f1:m in⇥m

k=1 Bk, m real coefficients l f1:m
1:m > 0. For any k in {1, . . . ,m} we have that Bk belongs to L s(X1:n)>0—in

which case we call Bk := {gk}—or Bk = IEB0
k for some j in {1, . . . ,n}, E in P /0(X1:n \{ j}) and B0

k in KD j , meaning that
B0

k \D j 6= /0—in which case we let hk belong to B0
k \D j and define gk := IEhk. Then the gamble f := Âm

k=1 l g1:m
k gk belongs

to B, and all of its terms l g1:m
k gk either are equal to 0, or belong to L (X1:m)>0 or to

Sn
j=1 A1:n\{ j}!{ j}. Since not all of

these terms are equal to 0, by Theorem 18 then f 2
Nn

j=1 D j, so that B belongs to KNn
j=1 D j , and therefore indeed so does A.

Proof [Proof of Theorem 20] This proof will consist of five parts: we will subsequently show that (i)
Nn

j=1 Kj is coherent,
(ii) it is represented by

Nn
j=1 D(Kj), (iii) marg`(

Nn
j=1 Kj) = K` for every ` in {1, . . . ,n}, (iv)

Nn
j=1 Kj is epistemically

independent, and (v)
Nn

j=1 Kj is the smallest such set of desirable gamble sets. Then (i), (iii) and (iv) establish that
Nn

j=1 Kj
is an independent product of K1, . . . , Kn, which is by (v) the smallest one. (ii) establishes the last claim about

Nn
j=1 Kj’s

representation.
For (i), to show that

Nn
j=1 Kj is coherent, we will regard A :=

Sn
j=1 A1:n\{ j}!{ j} as an assessment on Q(X1:n). By

Theorem 9 it suffices to show that A ✓ KD for some coherent set of desirable gambles D ✓ L (X1:n)—in other words,
that A is consistent.

To this end, note already using Theorem 7 that D(K1), . . . , D(Kn) all are non-empty since K1, . . . , Kn are coherent.
Consider any D1 in D(K1), . . . , Dn in D(Kn), and let D⇤ :=

Nn
j=1 D j. Then Theorem 18 implies that D⇤ is a coherent set of

desirable gambles on L (X1:n) that is epistemically independent—by which we mean that margOD⇤ = margO(D⇤cEI) for
all disjoint non-empty subsets I and O of {1, . . . ,n} and EI in P /0(XI)—and marginalizes to D1, . . . , Dn. We will show
that A ✓ KD⇤ . To this end, consider any A in A , meaning that there is an index j in {1, . . . ,n} such that A 2 A1:n\{ j}!{ j},
or, in other words, such that A = IEB for some B in Kj and E in P /0(X1:n\{ j}). Since D j belongs to D(Kj) we have that
Kj ✓ KD j , and therefore B 2 KD j = Kmarg jD⇤ . Since Kmarg jD⇤ = marg jKD⇤ by Proposition 15, this means that B 2 KD⇤ . But
D⇤ is an epistemically independent set of desirable gambles, and it therefore satisfies marg j(D⇤cE) = marg jD⇤, or in other
words, f 2 D⇤ , IE f 2 D⇤, for any f in L (X j), and hence also A = IEB 2 KD⇤ . Since the choice of A in A was arbitrary,
this implies that indeed A ✓ KD⇤ , guaranteeing that indeed

Nn
j=1 Kj is coherent.

For (ii), since we have just proved that A is consistent, we know by Theorem 9 that

nO

j=1
Kj =

\�
KD : D 2 D(X1:n) and A ✓ KD

 

=
\�

KD : D 2 D(X1:n) and (8 j 2 {1, . . . ,n})A1:n\{ j}!{ j} ✓ KD
 

=
\�

KD : D 2 D(X1:n) and
�
8 j 2 {1, . . . ,n},B 2 Kj,E 2 P /0(X1:n\{ j})

�
IEB 2 KD

 
=
\�

KD : D 2 D⇤ ,

where we defined D⇤ := {D 2 D(X1:n) : (8 j 2 {1, . . . ,n},B 2 Kj,E 2 P /0(X1:n\{ j}))IEB 2 KD} for the sake of brevity.
This collection D⇤ has two interesting properties: it satisfies

Sn
j=1 A1:n\{ j}!{ j} ✓ KD⇤ for every D⇤ in D⇤, as can be

seen from its definition. It also satisfies for every j in {1, . . . ,n} the inclusion marg jD⇤ ✓ D(Kj)—in other words,
marg jD⇤ 2 D(Kj) for all D⇤ in D⇤. To show this last property, consider any D⇤ in D⇤, j in {1, . . . ,n}, and consider
E := X1:n\{ j} 2 P /0(X1:n\{ j}). That D⇤ belongs to D⇤ implies that B = IEB 2 KD⇤ for every B in Kj, and hence Kj ✓ KD⇤ .

1
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But Kj is a set of desirable gamble sets on X j, so Kj ✓ marg jKD⇤ = Kmarg jD⇤ , where the equality is due to Proposition 15.
This implies that indeed marg jD⇤ 2 D(Kj).

This part of the proof is established if we show that
T
{KD : D 2 D⇤}=

T
{KD : D 2

Nn
j=1 D(Kj)}. We will first show

that
Nn

j=1 D(Kj)✓ D⇤. To this end, consider any D in
Nn

j=1 D(Kj)—meaning that D =
Nn

j=1 D j for some D1 in D(K1),
. . . , Dn in D(Kn)—and any j in {1, . . . ,n}, B in Kj and E in P /0(X1:n\{ j}). That D j belongs to D(Kj) implies that B 2 KD j ,
and Theorem 18 tells us that marg jD = D j, so B 2 KD . But then f 2 D for some f in B, and since D is an epistemically
independent set of desirable gambles, therefore IE f 2 D, whence IEB 2 KD . This implies that D 2 D⇤, and therefore,
since the choice of D in

Nn
j=1 D(Kj) was arbitrary, indeed

Nn
j=1 D(Kj) ✓ D⇤, which implies that

T
{KD : D 2 D⇤} ✓T

{KD : D 2
Nn

j=1 D(Kj)}.
To establish the equality between these two intersections, it suffices to prove that also the converse set inclusion holds. To

this end, consider any A in
T
{KD : D 2

Nn
j=1 D(Kj)}, meaning that A\

Nn
j=1 D j 6= /0 for all D1 in D(K1), . . . , Dn in D(Kn).

We need to show that then A 2
T
{KD : D 2 D⇤}—or in other words, that A \D⇤ 6= /0 for any D⇤ in D⇤—so consider any

D⇤ in D⇤. We have established earlier that then marg jD⇤ 2 D(Kj) for any j in {1, . . . ,n}, so that
Nn

j=1 marg jD⇤ belongs toNn
j=1 D(Kj) and we therefore have that A \

Nn
j=1 marg jD⇤ 6= /0, or in other words, that A 2 KNn

j=1 marg jD⇤ . But we have
seen in Proposition 19 that KNn

j=1 marg jD⇤ is the smallest element of K that includes
Sn

j=1 A1:n\{ j}!{ j}, and therefore,
since we already have established above that

Sn
j=1 A1:n\{ j}!{ j} ✓ KD⇤ , we have that KNn

j=1 marg jD⇤ ✓ KD⇤ . This implies
that A 2 KD⇤ , whence indeed A \D⇤ 6= /0.

For (iii), consider any ` in {1, . . . ,n}, and we will show that marg`(
Nn

j=1 Kj) = K`. We know from the second part of
this proof, established above, that

Nn
j=1 Kj is represented by

Nn
j=1 D(Kj), and therefore also, using Proposition 15, that

marg`(
Nn

j=1 Kj) is represented by marg`(
Nn

j=1 D(Kj)). Infer the following chain of equalities:

marg`

✓ nO

j=1
D(Kj)

◆
= marg`

✓⇢ nO

j=1
D j : D1 2 D(K1), . . . ,Dn 2 D(Kn)

�◆

=

⇢
marg`

✓ nO

j=1
D j

◆
: D1 2 D(K1), . . . ,Dn 2 D(Kn)

�

= {D` : D1 2 D(K1), . . . ,Dn 2 D(Kn)}= D(K`),

where the first equality follows from the definition of
Nn

j=1 D(Kj), the second one from the definition above Proposition 15
of margO(D) for any collection D of sets of desirable gambles, and the third one from Theorem 18. This means that
marg`(

Nn
j=1 Kj) is represented by D(K`). Theorem 7 then implies that indeed marg`(

Nn
j=1 Kj) = K`.

Finally, for (iv), let K⇤ ✓ Q(X1:n) be the smallest independent product of K1, . . . , Kn. Since K⇤ is epistemically
independent, we have by Equation (4) in particular, for any j in {1, . . . ,n} and E in P /0(X1:n\{ j}), that

marg j(K
⇤cE) = marg jK

⇤ = Kj,

where the first equality holds because K is epistemically independent, and the second one because K⇤ marginalizes to
K1, . . . , Kn. This implies that any B in Kj should belong to K⇤cE, and hence that IEB 2 K⇤. Since this should hold for
any j in {1, . . . ,n}, B in Kj, and E in P /0(X1:n\{ j}), we have that

Sn
j=1 A1:n\{ j}!{ j} ✓ K⇤. Since K⇤ is coherent, also

posi(
Sn

j=1 A1:n\{ j}!{ j}[L s(X1:n)>0)✓ K⇤. But this tells us that
Nn

j=1 Ki ✓ K⇤, establishing that
Nn

j=1 Ki indeed is the
smallest independent product of K1, . . . , Kn.

Proof [Proof of Proposition 21] By Theorem 20
N

`2L1[L2
K` is represented by

N
`2L1[L2

D(K`). Infer using the associativity
of the independent natural extension for sets of desirable gambles that

O

`2L1[L2

D(K`) =

⇢ O

`2L1[L2

D` : (8` 2 L1 [L2)D` 2 D(K`)

�

=

⇢O

`12L1

D`1 ⌦
O

`22L2

D`2 : (8` 2 L1 [L2)D` 2 D(K`)

�

=

⇢O

`12L1

D`1 : (8`1 2 L1)D`1 2 D(K`1)

�
⌦
⇢O

`22L2

D`2 : (8`2 2 L1 [L2)D`2 2 D(K`2)

�

=
O

`12L1

D(K`1)⌦
O

`22L2

D(K`2),

2



INDEPENDENT NATURAL EXTENSION FOR CHOICE FUNCTIONS

so that
N

`2L1[L2
K` is represented by the independent natural extension

N
`12L1

D(K`1)⌦
N

`22L2
D(K`2) of two coher-

ent sets of desirable gambles
N

`12L1
D(K`1) and

N
`22L2

D(K`2). Theorem 20 then implies that indeed
N

`2L1[L2
K` =N

`12L1
K`1 ⌦

N
`22L2

K`2 .

Proof [Proof of Proposition 22] Use Theorem 20 to infer that
Nn

j=1 Kj is represented by
Nn

j=1 D(Kj), so
Nn

j=1 Kj =T
{KD : D 2

Nn
j=1 D(Kj)}. Note that, by Theorem 18, any D in

Nn
j=1 D(Kj) satisfies

margOD = margO(DcEI)

for any disjoint non-empty subsets I and O of {1, . . . ,n}, and EI in P /0(XI). Consider any A in Q(XI) and EA ✓P /0(XO),
and infer the following equivalences

A 2
nO

j=1
Kj ,

⇣
8D 2

nO

j=1
D(Kj)

⌘
(9 f 2 A) f 2 D ,

⇣
8D 2

nO

j=1
D(Kj)

⌘
(9 f 2 A)IE f f 2 D

,
⇣
8D 2

nO

j=1
D(Kj)

⌘
EAA \D 6= /0 , EAA 2

nO

j=1
Kj,

which establishes that
Nn

j=1 Kj satisfies the stronger requirement of Equation (9).
To show that then, as a consequence, any independent product of K1, . . . , Kn includes A ⇤

1:n\{ j}!{ j} :=
Sn

j=1
�

EA ·
A : A 2 Kj and EA ✓ P /0(X1:n\{ j})

 
, it suffices to show that the smallest independent product

Nn
j=1 Kj of K1, . . . , Kn

includes A ⇤
1:n\{ j}!{ j}. To this end, consider any j in {1, . . . ,n} and any A in Kj. Then since

Nn
j=1 Kj marginalizes to Kj,

we have A 2
Nn

j=1 Kj. By Equation (9) [use O := { j} and I := {1, . . . ,n} \ { j}], then also EA ·A 2
Nn

j=1 Kj for any
EA ✓ P /0(X1:n\{ j}). Since the choice of j in {1, . . . ,n} was arbitrary, this implies that indeed A ⇤

1:n\{ j}!{ j} ✓
Nn

j=1 Kj.

Proof [Proof of Lemma 24] To show that D is coherent, it suffices by Theorem 6 to show that L0 \ posi(I{F}D1 [
I{U}D2) = /0. To this end, consider any f in posi(I{F}D1 [ I{U}D2), meaning that f = Âm

k=1 lk fk for some m in N, real
coefficients l1:m > 0, and gambles f1, . . . , fm in I{F}D1 [ I{U}D2. For every k in {1, . . . ,m}, if fk belongs to I{F}D1
then fk(U,H) = fk(U,T ) = 0 and fk(F,H)+ fk(F,T )> 0, and if fk belongs to I{U}D2 then fk(F,H) = fk(F,T ) = 0 and
fk(U,H)+ fk(U,T )> 0, or fk(U,H)+ fk(U,T ) = 0 but then fk(U,H)> fk(U,T ). This implies that f(·,H)+ f(·,T )> 0
whence indeed f /2 L0.

To show that it is no independent product, let us show that margY D ⇢ margY (Dc{U}), so that learning that the coin is
unfair, results in a bigger Y -marginal than not learning anything at all. More specifically, we will show that margY D = D1
and margY (Dc{U}) = D2.

To show that margY D ✓ D1, consider any f in margY D. Then f 2 L (Y ) and f 2 D, meaning that f > 0—in which
case f 2 D1 by its coherence—or f � Âm

k=1 lk fk for some m in N, real coefficients l1:m > 0, and gambles f1, . . . , fm
in I{F}D1 [ I{U}D2. Since f belongs to L (Y ), we have that f � 1

2 Âx2X Âm
k=1 lk fk(x,·), and therefore f(H)+ f(T )�

1
2 Âx2X Âm

k=1 lk fk(x,H)+ 1
2 Âx2X Âm

k=1 lk fk(x,T )> 0, so that indeed f 2 D1.
That also margY D ◆ D1 follows once we realise that D1 ✓ D2, whence D ◆ posi(I{F}D1 [ I{U}D1 [L (X ⇥Y )>0) =

posi(D1[L (X ⇥Y )>0), which is the cylindrical extension12 of D1, a coherent set of desirable gambles that marginalizes
to D1.

To show now that conditioning on {U} changes the marginal margY (Dc{U}) information to D2, let us show first that
margY (Dc{U}) ✓ D2. This follows once we realise that D1 ✓ D2 and therefore D ✓ posi(I{F}D2 [ I{U}D2 [L (X ⇥
Y )>0) = posi(D2 [L (X ⇥Y )>0), which is the cylindrical extension of D2, a coherent set of desirable gambles that
marginalizes to D2. This implies that margY D ✓ margY posi(D2 [L (X ⇥Y )>0) = D2.

To show, conversely, that margY (Dc{U})◆ D2, consider any f in D2. This implies that I{U} f 2 I{U}D2 ✓ D. By the
conditioning rule for sets of desirable gambles

DcE := { f 2 L (E) : IE f 2 D},

then f 2 Dc{U}, and since f belongs to L (Y ), indeed f 2 margY (Dc{U}).

Proof [Proof of Lemma 25] Since Y is a binary variable, it suffices to check that

{I{U} f + e,�I{F} f + e} 2 KD

12. See De Cooman and Miranda [11, Proposition 7].
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for all f in L (X ) and e 2 R>0, as discussed right after Definition 23. So consider any f in L (X ) and e 2 R>0; we need
to show that then I{F} f + e or �I{U} f + e belongs to D. We will proceed by considering two exhaustive cases: (i) f 2 D
and (ii) f /2 D.

For (i) f 2 D implies that I{U} f = I{U} f(U,·) 2 Dc{U}. But in the proof of Lemma 24 we have established that
margY Dc{U}= D2, and therefore f(U,·)2 D2, whence I{U} f = I{U} f(U,·)2 I{U}D2 ✓ D, and therefore indeed I{U} f +
e 2 D.

For (ii) f /2 D implies that I{F} f = I{F} f(F,·) /2 Dc{F}. By a completely similar argument as in the proof of Lemma 24,
we can establish that margY Dc{F} = D1, so that I{F} f(F,·) /2 D1. But this means that I{F} f(F,H)+ I{F} f(F,T )  0,
whence �I{F} f(F,H)+ e � I{F} f(F,T )+ e > 0 and therefore indeed �I{F} f + e =�I{F} f(F,·)+ e 2 D1 ✓ D.
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