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What we choose between: gambles

An uncertain variable X takes values in the finite possibility space X .

A gamble f : X → R is an uncertain reward whose value is f (X ), and we
collect all gambles in L = RX .

X = {H,T}
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Sets of desirable gambles
A set of desirable gambles D is a set of gambles that the subject prefers
to 0.

f ∈ D means: “f is preferred over 0.”

vacuous set of desirable gamblesuniform probability p = (1/2,1/2)
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Sets of desirable gamble sets

f ∈ D means: “f is preferred over 0.”

What about

“The coin has with two identical sides:
either both sides are heads (H) or tails (T)”?
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−I{H}+ ε

−I{T}+δ

One of −I{H}+ ε and −I{T}+δ is preferred over 0.
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Sets of desirable gamble sets

f ∈ D means: “f is preferred over 0.” But: One of −I{H}+ ε and −I{T}+δ

is preferred over 0.

A set of desirable gamble sets K is a collection of sets A that contain at
least one gamble f ∈ A that is preferred over 0.

A ∈ K means: “A contains a gamble f that is preferred over 0”.

Rationality axioms:

K0. /0 /∈ K ;
K1. A ∈ K ⇒ A \{0} ∈ K ;
K2. {f} ∈ K , for all f in L>0;
K3. if A1,A2 ∈ K and if, for all f in A1 and g in A2, (λf,g ,µf,g)> 0, then

{λf,g f+µf,gg : f ∈ A1,g ∈ A2} ∈ K ;

K4. if A1 ∈ K and A1 ⊆ A2 then A2 ∈ K , for all A1 and A2 in Q.
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Coin with two identical sides

H

T

−I{H}+ ε

−I{T}+δ

One of −I{H}+ ε and −I{T}+δ is preferred over 0.

The smallest
coherent K such that {−I{H}+ ε,−I{T}+δ} ∈ K , for all ε,δ > 0, is

Rs({{f,g} : f,g ∈L6≤0 and (f(T),g(H))> 0}).



Coin with two identical sides

H

T

One of −I{H}+ ε and −I{T}+δ is preferred over 0. The smallest
coherent K such that {−I{H}+ ε,−I{T}+δ} ∈ K , for all ε,δ > 0, is

Rs({{f,g} : f,g ∈L6≤0 and (f(T),g(H))> 0}).



Irrelevant natural extension

X is epistemically irrelevant to Y when learning about the value of X
does not influence our beliefs about Y .

K satisfies epistemic irrelevance of X to Y if margY (K cE) = margY (K ) for
all non-empty E ⊆X .

Given a coherent KY on Y , what is the smallest coherent K on X ×Y
that marginalises to KY and that satisfies epistemic irrelevance of X
to Y?

See you at the poster!
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1 Belief model: sets of desirable gamble(s/ sets)

The definitions and theorems in this section are taken from [Jasper De Bock & Gert de Cooman.
A Desirability-Based Axiomatisation for Coherent Choice Functions, SMPS 2018] and [Jasper
De Bock & Gert de Cooman. Interpreting, Axiomatising and Representing Coherent Choice
Functions in Terms of Desirability, ISIPTA 2019].

Gambles The uncertain variable X takes values in the finite possibility space X . Any real-
valued function on X is called a gamble, and we collect all of them in L (X ), or L . Given
two gambles f and g in L , we say that f ≤ g if (∀x ∈X ) f (x) ≤ g(x). Its strict variant < on
L is given by: f < g⇔ ( f ≤ g and f 6= g); we collect all gambles f > 0 in L>0.

Desirability A set of desirable gambles D ⊆L is a set of gambles that the subject prefers
over 0.

f ∈D means: the subject prefers f over 0.

Rationality axioms We call a set of desirable gambles D coherent if for all gambles f and g
and all real λ > 0:
D1. 0 /∈ D; [avoiding null gain]
D2. if 0 < f then f ∈ D; [desiring partial gain]
D3. if f ∈ D then λ f ∈ D; [positive scaling]
D4. if f ,g ∈ D then f + g ∈ D. [combination]
A set of desirable gambles D is coherent if and only if it is a convex cone that includes L>0 and
has nothing in common with the gambles f ≤ 0.
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Sets of desirable gamble sets We define Q(X ), or Q, as the collection of finite subsets
of L (X ). A set of desirable gamble sets K ⊆Q is a collection of sets A of gambles that
contain at least one gamble f ∈ A that is preferred over 0.

A ∈ K means: A contains at least one gamble that the subject prefers over 0.

So a set of desirable gamble set can express more general types of uncertainty.

Rationality axioms A set of desirable gamble sets K⊆Q is called coherent if for all A, A1
and A2 in Q, all {λ f,g, µ f,g : f ∈ A1,g ∈ A2} ⊆R, and all f in L :

K0. /0 /∈ K;
K1. A ∈ K⇒ A \{0} ∈ K;
K2. { f} ∈ K, for all f in L>0;
K3. if A1,A2 ∈ K and if, for all f in A1 and g in A2, (λ f,g, µ f,g) > 0, then

{λ f,g f + µ f,gg : f ∈ A1,g ∈ A2} ∈ K;

K4. if A1 ∈ K and A1 ⊆ A2 then A2 ∈ K, for all A1 and A2 in Q.

Here λ1:n := (λ1, . . . ,λn) > 0 means λi ≥ 0 for all i, and λ j > 0 for at least one j.

Natural extension An assessment A ⊆Q is a collection of gamble sets that the subject
finds desirable, meaning that the subject’s set of desirable gamble sets K must satisfy A ⊆ K.
It is called consistent when it can be extended to a coherent set of desirable gamble sets.

Theorem [Jasper De Bock & Gert de Cooman, SMPS 2018, Theorem 10] Consider any
assessment A ⊆Q. Then A is consistent when /0 /∈ A and {0} /∈ Posi(L s

>0∪A ). If this
is the case, the smallest coherent extension of A —which is called its natural extension—is
given by Rs(Posi(L s

>0∪A )).
Here we used the set L s(X )>0 := {{ f} : f ∈L (X )>0}—often denoted simply by L s

>0 when
it is clear what the possibility space X is—and the following two operations on P(Q):

Rs(K) := {A ∈Q : (∃B ∈ K)B \L≤0 ⊆ A}

Posi(K) :=
{{ n

∑
k=1

λ
f1:n

k fk : f1:n ∈
n×

k=1
Ak

}
: n ∈N,A1, . . . ,An ∈ K,

(
∀ f1:n ∈

n×
k=1

Ak

)
λ

f1:n
1:n > 0

}
for all K in P(Q).

Connection with choice functions A set of desirable gamble sets K is a convenient repre-
sentation of a choice function C, which is a map Q \ ( /0)→Q such that A 7→C(A)⊆ A. They
are linked by

A−{ f} ∈ K⇔ f /∈C(A∪{ f}), for all A in Q and f in L .

So, every result about sets of desirable gamble sets translates to choice functions.

Connection with desirability Given a set of desirable gamble sets K, its corresponding set
of desirable gambles DK consists of the singleton sets in K: DK := { f ∈L : { f} ∈ K}. If K is
coherent, then so is DK.
Conversely, given a coherent set of desirable gambles D, there are generally multiple cor-
responding coherent sets of desirable gamble sets K, the smallest of which is given by
KD := {A ∈Q : A∩D 6= /0}.

2 Example

Coin with two identical sides Consider a coin with two identical sides of unknown type: either both
sides are heads (H) or tails (T).
Assessment Observe that:
If both sides are tails, the gamble −I{H}+ ε = (−1+ ε ,ε) is preferred
to 0, for every ε > 0.
If both sides are heads, the gamble −I{T}+ δ = (δ ,−1+ δ ) is pre-
ferred to 0, for every δ > 0.
Therefore, the set {−I{T}+ ε ,−I{H}+ δ} contains a gamble that is
preferred to 0. So A := {{−I{T}+ ε ,−I{H}+ δ} : ε ,δ > 0} is the
assessment.
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Consistency Is the assessment A consistent? If so, then we can consider its natural extension. To this
end, we calculate Posi(L s

>0∪A ). We find that

Posi(L s
>0∪A ) = Rs({{ f,g} : f,g ∈L6≤0 and ( f(T),g(H))> 0}). (1)

Therefore, since /0 /∈A by its definition, and clearly {0} /∈ Posi(L s
>0∪A ), the assessment A is consistent.

Natural extension Since Rs(Rs(A)) = Rs(A) for any gamble set A,
the natural extension K := Rs(Posi(L s

>0∪A )) is given by Equation (1)
above. This means that a gamble set A belongs to K if and only if A
contains a gamble f in the blue hatched area and a gamble g in the red
hatched area.
Set of desirable gambles These gambles f and g may be equal,
and then f = g belongs to L>0. Therefore the corresponding set of
desirable gambles DK is the vacuous set L>0: sets of desirable gambles
are incapable of distinguishing between this belief, and a vacuous belief.
Sets of desirable gamble sets can make this distinction.
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T

3 Conditioning

The subject’s beliefs about the uncertain variable X , taking values in X , is described by a coherent set of
desirable gamble sets K on X .

Assume there is new information: X assumes a value in a non-empty subset E of X .

How can this new information be taken into account?

Definition For any event (non-empty subset of X ) E, we define the conditional set of desirable
gamble sets KcE as

KcE := {A∈Q(E) : IEA∈K}, where IEA ∈ K := {IE f : f ∈ A}, so that IEA is a set of gambles on X .

Note that (IE f )(x) equals f (x) if x ∈ E and 0 if x /∈ E.

Conditioning preserves coherence, and reduces to the usual definition for desirability.

4 Multivariate sets of desirable gamble sets

Setting We have two uncertain variables X and Y , taking values in the finite possibility spaces X and
Y respectively. From here on, the set of all gambles on X ×Y is denoted by L . This is heavily inspired
on [Gert de Cooman & Enrique Miranda, Irrelevant and independent natural extension for sets of desirable
gambles, JAIR 2012].

Cylindrical extension of gambles Let f be a gamble on X . Its cylindrical extension f ∗ is given by

f ∗(x,y) := f (x) for all x in X and y in Y .

f ∗ belongs to L . Similarly, for any set A of gambles on X , we let A∗ := { f ∗ : f ∈ A}, and for any set of
gamble sets K on X , we let K∗ := {A∗ : A ∈ K} be the corresponding set on X ×Y .

Marginalisation Given a set of desirable gamble sets K on X ×Y , its marginal margXK on X is

margXK := {A ∈Q(X ) : A ∈ K}= K∩Q(X ).

Weak extension of sets of desirable gamble sets Let K be a coherent set of desirable gamble sets
on X .

What is the smallest coherent set of desirable gamble sets on X ×Y that marginalises to K?

Proposition The least informative coherent set of desirable gamble sets on X ×Y that marginalises
to K is given by Rs(Posi(L s

>0∪K∗)). It is called the weak extension of K.

Definition (Epistemic irrelevance) We say that X is epistemically irrelevant to Y when learning
about the value of X does not influence our beliefs about Y . A set of desirable gamble sets K on X ×Y
satisfies epistemic irrelevance of X to Y if margY (KcE) = margY K for all non-empty E ⊆X .

Irrelevant natural extension Let K be a coherent set of desirable gamble sets on Y .

What is the smallest coherent set of desirable gamble sets on X ×Y that
marginalises to K and satisfies epistemic irrelevance of X to Y ?

Theorem (Irrelevant natural extension) The smallest coherent set of desirable gamble sets on X ×Y
that marginalises to K and satisfies epistemic irrelevance of X to Y is given by

Rs(Posi(L s
>0∪A irr

X→Y )), where the assessment A irr
X→Y is {IEA : A ∈ K and E ⊆X and E 6= /0}.


