Irrelevant natural extension for choice functions Enrique Miranda **Utc Arthur Van Camp**

Sorbonne universites Heudiasyc, Université de Technologie de Compiègne, France

Department of Statistics and Operations Research, University of Oviedo, Spain Universidad de Oviedo

Belief model: sets of desirable gamble(s/ sets)

The definitions and theorems in this section are taken from [Jasper De Bock & Gert de Cooman. A Desirability-Based Axiomatisation for Coherent Choice Functions, SMPS 2018] and [Jasper De Bock & Gert de Cooman. Interpreting, Axiomatising and Representing Coherent Choice Functions in Terms of Desirability, ISIPTA 2019].

Gambles The uncertain variable X takes values in the finite possibility space \mathscr{X} . Any realvalued function on \mathscr{X} is called a gamble, and we collect all of them in $\mathscr{L}(\mathscr{X})$, or \mathscr{L} . Given two gambles f and g in \mathscr{L} , we say that $f \leq g$ if $(\forall x \in \mathscr{X}) f(x) \leq g(x)$. Its strict variant < on \mathscr{L} is given by: $f < g \Leftrightarrow (f \leq g \text{ and } f \neq g)$; we collect all gambles f > 0 in $\mathscr{L}_{>0}$.

A set of desirable gambles $D \subseteq \mathscr{L}$ is a set of gambles that the subject prefers Desirability over 0.

 $f \in D$ means: the subject prefers f over 0.

Example 2

Coin with two identical sides Consider a coin with two identical sides of unknown type: either both sides are heads (H) or tails (T). **Assessment** Observe that: If both sides are tails, the gamble $-\mathbb{I}_{\{H\}} + \epsilon = (-1 + \epsilon, \epsilon)$ is preferred $-\mathbb{I}_{\{H\}}+\varepsilon_{H}$ to 0, for every $\varepsilon > 0$. If both sides are heads, the gamble $-\mathbb{I}_{\{\mathrm{T}\}}+\delta=(\delta,-1+\delta)$ is preferred to 0, for every $\delta > 0$. Therefore, the set $\{-II_{T} + \varepsilon, -II_{H} + \delta\}$ contains a gamble that is preferred to 0. So $\mathscr{A} := \{\{-\mathbb{I}_{\{T\}} + \varepsilon, -\mathbb{I}_{\{H\}} + \delta\} : \varepsilon, \delta > 0\}$ is the assessment. **Consistency** Is the assessment *A* consistent? If so, then we can consider its natural extension. To this

end, we calculate $Posi(\mathscr{L}_{>0}^{s} \cup \mathscr{A})$. We find that

$$\operatorname{Posi}(\mathscr{L}_{>0}^{s} \cup \mathscr{A}) = \operatorname{Rs}(\{\{f,g\} : f,g \in \mathscr{L}_{\not\leq 0} \text{ and } (f(T),g(H)) > 0\}).$$
(1)

Rationality axioms	We call a set of desirable gambles D coherent if for all gambles f and g
and all real $\lambda > 0$:	
D_1 . $0 \notin D$;	[avoiding null gain]
D ₂ . if $0 < f$ then $f \in$	D; [desiring partial gain]
D ₃ . if $f \in D$ then λf	$\in D;$ [positive scaling]
D ₄ . if $f, g \in D$ then f	$+g \in D$. [combination]
A set of desirable gambles D is coherent if and only if it is a convex cone that includes $\mathscr{L}_{>0}$ and	

DDD x_1 a general Da precise Dvacuous D

has nothing in common with the gambles $f \leq 0$.

Sets of desirable gamble sets We define $\mathscr{Q}(\mathscr{X})$, or \mathscr{Q} , as the collection of finite subsets of $\mathscr{L}(\mathscr{X})$. A set of desirable gamble sets $K \subseteq \mathscr{Q}$ is a collection of sets A of gambles that contain at least one gamble $f \in A$ that is preferred over 0.

 $A \in K$ means: A contains at least one gamble that the subject prefers over 0.

So a set of desirable gamble set can express more general types of uncertainty.

Rationality axioms A set of desirable gamble sets $K \subseteq \mathcal{Q}$ is called **coherent** if for all A, A_1 and A_2 in \mathscr{Q} , all $\{\lambda_{f,g}, \mu_{f,g} : f \in A_1, g \in A_2\} \subseteq \mathbb{R}$, and all f in \mathscr{L} :

Therefore, since $\emptyset \notin \mathscr{A}$ by its definition, and clearly $\{0\} \notin Posi(\mathscr{L}_{>0}^s \cup \mathscr{A})$, the assessment \mathscr{A} is consistent.

Natural extension Since Rs(Rs(A)) = Rs(A) for any gamble set A, the natural extension $K := \operatorname{Rs}(\operatorname{Posi}(\mathscr{L}_{>0}^{s} \cup \mathscr{A}))$ is given by Equation (1) above. This means that a gamble set A belongs to K if and only if A contains a gamble f in the blue hatched area and a gamble g in the red hatched area.

Set of desirable gambles These gambles f and g may be equal, and then f = g belongs to $\mathscr{L}_{>0}$. Therefore the corresponding set of desirable gambles D_K is the vacuous set $\mathscr{L}_{>0}$: sets of desirable gambles are incapable of distinguishing between this belief, and a vacuous belief. Sets of desirable gamble sets can make this distinction.

The subject's beliefs about the uncertain variable X, taking values in \mathscr{X} , is described by a coherent set of desirable gamble sets K on \mathscr{X} .

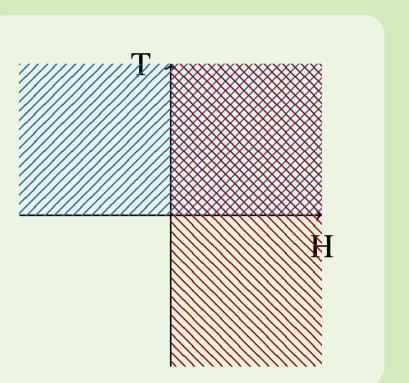
Assume there is new information: X assumes a value in a non-empty subset E of \mathscr{X} .

How can this new information be taken into account?

Definition For any event (non-empty subset of \mathscr{X}) E, we define the conditional set of desirable gamble sets K|E as

 $K \downarrow E := \{A \in \mathscr{Q}(E) : \mathbb{I}_E A \in K\}$, where $\mathbb{I}_E A \in K := \{\mathbb{I}_E f : f \in A\}$, so that $\mathbb{I}_E A$ is a set of gambles on \mathscr{X} . Note that $(\mathbb{I}_E f)(x)$ equals f(x) if $x \in E$ and 0 if $x \notin E$.

Conditioning preserves coherence, and reduces to the usual definition for desirability.



 $K_0. \emptyset \notin K;$ $K_1. A \in K \Rightarrow A \setminus \{0\} \in K;$ K_2 . $\{f\} \in K$, for all f in $\mathscr{L}_{>0}$; K₃. if $A_1, A_2 \in K$ and if, for all f in A_1 and g in A_2 , $(\lambda_{f,g}, \mu_{f,g}) > 0$, then $\{\lambda_{f,g}f + \mu_{f,g}g : f \in A_1, g \in A_2\} \in K;$ K₄. if $A_1 \in K$ and $A_1 \subseteq A_2$ then $A_2 \in K$, for all A_1 and A_2 in \mathcal{Q} .

Here $\lambda_{1:n} := (\lambda_1, \dots, \lambda_n) > 0$ means $\lambda_i \ge 0$ for all *i*, and $\lambda_j > 0$ for at least one *j*.

Natural extension An assessment $\mathscr{A} \subseteq \mathscr{Q}$ is a collection of gamble sets that the subject finds desirable, meaning that the subject's set of desirable gamble sets K must satisfy $\mathscr{A} \subseteq K$. It is called **consistent** when it can be extended to a coherent set of desirable gamble sets.

Theorem [Jasper De Bock & Gert de Cooman, SMPS 2018, Theorem 10] Consider any assessment $\mathscr{A} \subseteq \mathscr{Q}$. Then \mathscr{A} is consistent when $\emptyset \notin \mathscr{A}$ and $\{0\} \notin \text{Posi}(\mathscr{L}_{>0}^{s} \cup \mathscr{A})$. If this is the case, the smallest coherent extension of \mathscr{A} —which is called its **natural extension**—is given by $\operatorname{Rs}(\operatorname{Posi}(\mathscr{L}_{>0}^{s} \cup \mathscr{A}))$.

Here we used the set $\mathscr{L}^{s}(\mathscr{X})_{>0} := \{\{f\} : f \in \mathscr{L}(\mathscr{X})_{>0}\}$ —often denoted simply by $\mathscr{L}^{s}_{>0}$ when it is clear what the possibility space \mathscr{X} is—and the following two operations on $\mathscr{P}(\mathscr{Q})$:

 $\mathsf{Rs}(K) := \{A \in \mathscr{Q} : (\exists B \in K) B \setminus \mathscr{L}_{\leq 0} \subseteq A\}$ $\operatorname{Posi}(K) := \left\{ \left\{ \sum_{k=1}^{n} \lambda_{k}^{f_{1:n}} f_{k} : f_{1:n} \in \bigwedge_{k=1}^{n} A_{k} \right\} : n \in \mathbb{N}, A_{1}, \dots, A_{n} \in K, \left(\forall f_{1:n} \in \bigwedge_{k=1}^{n} A_{k} \right) \lambda_{1:n}^{f_{1:n}} > 0 \right\}$ for all K in $\mathscr{P}(\mathscr{Q})$.

Connection with choice functions A set of desirable gamble sets *K* is a convenient representation of a choice function C, which is a map $\mathscr{Q} \setminus (\emptyset) \to \mathscr{Q}$ such that $A \mapsto C(A) \subseteq A$. They are linked by

 $A - \{f\} \in K \Leftrightarrow f \notin C(A \cup \{f\}), \text{ for all } A \text{ in } \mathscr{Q} \text{ and } f \text{ in } \mathscr{L}.$

Multivariate sets of desirable gamble sets 4

Setting We have two uncertain variables X and Y, taking values in the finite possibility spaces \mathscr{X} and \mathscr{Y} respectively. From here on, the set of all gambles on $\mathscr{X} \times \mathscr{Y}$ is denoted by \mathscr{L} . This is heavily inspired on [Gert de Cooman & Enrique Miranda, Irrelevant and independent natural extension for sets of desirable gambles, JAIR 2012].

Cylindrical extension of gambles Let f be a gamble on \mathscr{X} . Its cylindrical extension f^* is given by

 $f^*(x,y) \coloneqq f(x)$ for all x in \mathscr{X} and y in \mathscr{Y} .

 f^* belongs to \mathscr{L} . Similarly, for any set A of gambles on \mathscr{X} , we let $A^* := \{f^* : f \in A\}$, and for any set of gamble sets *K* on \mathscr{X} , we let $K^* := \{A^* : A \in K\}$ be the corresponding set on $\mathscr{X} \times \mathscr{Y}$.

Marginalisation Given a set of desirable gamble sets K on $\mathscr{X} \times \mathscr{Y}$, its marginal marg_XK on \mathscr{X} is

 $\operatorname{marg}_{X} K := \{A \in \mathscr{Q}(\mathscr{X}) : A \in K\} = K \cap \mathscr{Q}(\mathscr{X}).$

Weak extension of sets of desirable gamble sets Let *K* be a coherent set of desirable gamble sets on $\mathscr X$.

What is the smallest coherent set of desirable gamble sets on $\mathscr{X} \times \mathscr{Y}$ that marginalises to K?

Proposition The least informative coherent set of desirable gamble sets on $\mathscr{X} \times \mathscr{Y}$ that marginalises to K is given by $Rs(Posi(\mathscr{L}_{>0}^{s} \cup K^{*}))$. It is called the weak extension of K.

Definition (Epistemic irrelevance) We say that X is epistemically irrelevant to Y when learning about the value of X does not influence our beliefs about Y. A set of desirable gamble sets K on $\mathscr{X} \times \mathscr{Y}$ satisfies epistemic irrelevance of X to Y if $\operatorname{marg}_{Y}(K|E) = \operatorname{marg}_{Y}K$ for all non-empty $E \subseteq \mathscr{X}$.

So, every result about sets of desirable gamble sets translates to choice functions.

Connection with desirability Given a set of desirable gamble sets *K*, its corresponding set of desirable gambles D_K consists of the singleton sets in K: $D_K := \{f \in \mathscr{L} : \{f\} \in K\}$. If K is coherent, then so is D_K .

Conversely, given a coherent set of desirable gambles D, there are generally multiple corresponding coherent sets of desirable gamble sets K, the smallest of which is given by $K_D := \{A \in \mathscr{Q} : A \cap D \neq \emptyset\}.$

Irrelevant natural extension Let K be a coherent set of desirable gamble sets on \mathscr{Y} .

What is the smallest coherent set of desirable gamble sets on $\mathscr{X} \times \mathscr{Y}$ that marginalises to *K* and satisfies epistemic irrelevance of *X* to *Y*?

Theorem (Irrelevant natural extension) The smallest coherent set of desirable gamble sets on $\mathscr{X} \times \mathscr{Y}$ that marginalises to K and satisfies epistemic irrelevance of X to Y is given by

 $Rs(Posi(\mathscr{L}_{>0}^{s} \cup \mathscr{A}_{X \to Y}^{irr}))$, where the assessment $\mathscr{A}_{X \to Y}^{irr}$ is $\{\mathbb{I}_{E}A : A \in K \text{ and } E \subseteq \mathscr{X} \text{ and } E \neq \emptyset\}$.