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Abstract
We consider coherent choice functions under the recent
axiomatisation proposed by De Bock and de Cooman
that guarantees a representation in terms of binary pref-
erences, and we discuss how to define conditioning in
this framework. In a multivariate context, we propose
a notion of marginalisation, and its inverse operation
called weak (cylindrical) extension. We combine this
with our definition of conditioning to define a notion
of irrelevance, and we obtain the irrelevant natural ex-
tension in this framework: the least informative choice
function that satisfies a given irrelevance assessment.
Keywords: Choice functions, coherence, sets of de-
sirable gambles, natural extension, conditioning, epis-
temic irrelevance.

1. Introduction

Consider two random variables X1 and X2, a belief model
about X2, and an assessment that X1 is irrelevant to X2—
meaning that learning about the value of X1 does not in-
fluence our beliefs about X2. What is the least informative
joint belief model about X1 and X2 that satisfies this irrele-
vance assessment and that marginalises to the given belief
model about X2? This belief model is called the “irrelevant
natural extension”. Having an expression for the irrelevant
natural extension is important for inference purposes, as
such extensions appear frequently in the context of credal
networks [5, 6, 8].

In the framework of sets of desirable gambles, an ex-
pression for the natural extension was established by
de Cooman and Miranda [11]. In this paper, we extend
their result to choice functions.

Choice functions are related to the fundamental problem
in decision theory: how to make a choice from within a set
of available (uncertain) options. In their seminal book, von
Neumann and Morgenstern [22] provided an axiomatisation
of choice based on a pairwise comparisons between options,
which has since received much attention, for instance by
Rubin [16] who generalised this idea and proposed a theory
of choice functions based on choices between more than
two elements. One of the aspects of Rubin’s theory [16] is
that, between any pair of options, the subject either prefers
one of them or is indifferent between them, so two op-

tions are never incomparable. However, for instance when
the available information does not allow for a complete
comparison of the options, the subject may be undecided
between two options without being indifferent between
them; this will for instance typically be the case when there
is little relevant information available. This is one of the
motivations for a theory of imprecise probabilities [23],
where incomparability and indifference are distinguished.
With this idea, Kadane et al. [13] and Seidenfeld et al. [18]
generalised Rubin’s axioms to allow for incomparability.

In this paper, we consider choice functions under the
axiomatisation of De Bock and de Cooman [9], which
generalises the one by Seidenfeld et al. [18]’s theory in
that it does not have an Archimedean axiom. One of the
main advantages of the axiomatisation in De Bock and de
Cooman [9] above the earlier work by Van Camp in [19]
is that it guarantees a representation in terms of pairwise
choice.

In Section 2, we recall the axiomatisation of coherent
choice functions in [9] and the connection with pairwise
choice. Next, in Section 3, we introduce our conditioning
rule for choice functions, and show how it relates with the
existing conditioning rule for sets of desirable gambles.
We use this definition to define a notion of irrelevance in
Section 4, from which we derive a formula for the irrelevant
natural extension. Some additional comments are gathered
in Section 5. Due to the space limitations, proofs have been
omitted.

2. Sets of desirable gamble sets & sets of
desirable gambles

Consider a finite possibility space X in which a random
variable X takes values. We denote by L (X ) the set of all
gambles—real-valued functions—on X , often denoted by
L when the it is clear from the context what the possibility
space is. We attach the following interpretation to gambles.
f (X) is an uncertain reward: if the actual outcome turns
out to be x in X , then the subject’s capital changes by
f (x). For any two gambles f and g, we write f ≤ g when
f (x) ≤ g(x) for all x in X , and we write f < g when
f ≤ g and f 6= g. We identify a real constant α with the
(constant) gamble that maps every element of X to α . We
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collect all the non-negative gambles—the gambles f for
which f ≥ 0—in the set L (X )≥0 (often denoted by L≥0)
and the positive ones—the gambles f for which f > 0—
in L (X )>0 (often denoted by L>0). Similarly, we write
f 6≤ g when f (x)> g(x) for some x in X , and collect all
the gambles f for which f 6≤ 0 in the set L (X )6≤0 (often
denoted by L6≤0).

We denote by Q(L (X )) the set of all finite subsets
of L (X )—also denoted by Q when the set of gambles
L (X ) is clear from the context. Elements of Q are the
gamble sets. We define two special subsets of Q: the col-
lection Q /0 := Q \{ /0} of non-empty gamble sets, and the
collection Q0 := {A ∈ Q : 0 ∈ A} ⊆ Q /0 of gamble sets
that include the status quo 0.

2.1. Sets of desirable gamble sets

A subject can state his preferences by specifying his re-
jected gambles from within every gamble set:

Definition 1 (Rejection function) A rejection function R
on L (X ) is a map R : Q /0(L (X ))→Q(L (X )) : A 7→
R(A) with the property that R(A)⊆ A.

Equivalent to the notion of a rejection function R is that of a
choice function C, which identifies the set C(A) :=A\R(A)
of non-rejected or chosen options from every gamble set A.

We focus our attention to the special subclass of coherent
rejection functions, that describe the beliefs of a rational
subject:

Definition 2 (Coherent rejection function) We call a re-
jection function R coherent if for all A, A1 and A2 in Q /0,
all {λ f ,g ,µ f ,g : f ∈ A1,g ∈ A2} ⊆R, and all f and g in L :

R0. R(A) 6= A;
R1. if f < g then f ∈ R({ f,g});
R2. if A1 ⊆ R(A2) and A2 ⊆ A then A1 ⊆ R(A);
R3. if 0∈R(A1) and 0∈R(A2) and if, for all f in A1 and g

in A2, (λ f ,g ,µ f ,g)> 0, then

0 ∈ R({λ f ,g f +µ f ,gg : f ∈ A1,g ∈ A2});

R4. f ∈ R(A) if and only if f +g ∈ R(A +{g}).

In this definition, we let A1+A2 := { f +g : f ∈ A1,g∈ A2}
be the Minkowski addition of two gamble sets A1 and A2,
and we define (λ1, . . . ,λn) > 0⇔ ((∀i ∈ {1, . . . ,n})λi ≥
0 and (∃i ∈ {1, . . . ,n})λi > 0).

These rationality requirements were introduced by De
Bock and de Cooman [9] as a modification of the one con-
sidered in Van Camp’s PhD dissertation [19] in order to
guarantee a representation of coherent rejection functions
in terms of sets of desirable gambles. In turn, Van Camp’s
representation is based on—after a necessary translation
from horse lotteries to options that are represented by ele-
ments of a real linear space, such as gambles—Seidenfeld

et al’s [18]. The work of Seidenfeld et al is particularly im-
portant because they were the first to introduce imprecise
choice functions—that distinguish between indifference
and incomparability—in Reference [13] and proved a repre-
sentation result in terms of probabilities in Reference [18].

The rationality requirements of Definition 2 are very sim-
ilar to those of Seidenfeld et al [18]. There are, however,
some differences: (i) [18] considers a strictly weaker ver-
sion of Axiom R1; (ii) they use an additional Archimedean
axiom that ensures representation in terms of probabilities
rather than non-Archimedean structures such as sets of
desirable gambles; and (iii) they impose a mixing axiom
that rules out maximality as a decision rule. Note that both
Seidenfeld et al’s [18] and our coherent choice functions
obey Aizerman’s condition, commonly written as

if A1 ⊆ R(A2) and A ⊆ A1 then A1 \A ⊆ R(A2 \A),

for all A,A1,A2 in Q. In our setting this is a consequence
of Axioms R2 and R3.

De Bock and de Cooman [9] established a useful equiva-
lent representation to rejection functions, namely that of a
set of desirable gamble sets:

Definition 3 (Set of desirable gamble sets) A set of de-
sirable gamble sets K on L (X ) is a subset of Q(L (X )).
We collect all the sets of desirable gamble sets in K :=
P(Q).

The idea is that the set of desirable gamble sets K collects
all the gamble sets that contain at least one gamble that our
subject strictly prefers over the status quo represented by 0,
the gamble that will leave your capital unchanged whatever
the outcome. A set of desirable gamble sets K is linked
with a rejection function R as follows:

(∀A ∈Q)(∀ f ∈L ) f ∈ R(A∪{ f})⇔ A−{ f} ∈ K. (1)

De Bock and de Cooman [9] gave an axiomatisation of
coherent sets of desirable gamble sets—sets of desirable
gamble sets of rational subjects. We refer to their article for
a justification of their axioms:

Definition 4 (Coherent set of desirable gamble sets) A
set of desirable gamble sets K ⊆Q is called coherent if for
all A, A1 and A2 in Q, all {λ f ,g ,µ f ,g : f ∈ A1,g ∈ A2} ⊆R,
and all f in L .

K0. /0 /∈ K;
K1. A ∈ K⇒ A \{0} ∈ K;
K2. { f} ∈ K, for all f in L>0;
K3. if A1,A2 ∈ K and if, for all f in A1 and g in A2,

(λ f ,g ,µ f ,g)> 0, then

{λ f ,g f +µ f ,gg : f ∈ A1,g ∈ A2} ∈ K;

K4. if A1 ∈ K and A1 ⊆ A2 then A2 ∈ K, for all A1 and A2
in Q.
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We collect all the coherent sets of desirable gamble sets in
the collection K(X ), often simply denoted by K when it is
clear from the context what the possibility space X is.

Given any rejection function R and any set of desirable
gamble sets K that are linked through Equation (1), we
have that R is coherent if and only if K is.

Given two sets of desirable gamble sets K1 and K2, we
follow De Bock and de Cooman [9] in calling K1 at most
as informative as K2 if K1 ⊆ K2. The resulting partially
ordered set (K,⊆) is a complete lattice where intersection
serves the role of infimum, and union that of supremum.
Furthermore De Bock and de Cooman [9, Theorem 8] show
that the partially ordered set (K,⊆) of coherent sets of
desirable gamble sets is a complete meet-semilattice: given
an arbitrary family {Ki : i∈ I}⊆K, its infimum inf{Ki : i∈
I}=

⋂
i∈I Ki is a coherent set of desirable gamble sets. This

allows for conservative reasoning: it makes it possible to
extend a partially specified set of desirable gamble sets to
the most conservative—least informative—coherent one
that includes it. This procedure is called natural extension:

Definition 5 ([9, Definition 9]) For any assessment A ⊆
Q, we let K(A ) := {K ∈ K : A ⊆ K}. We call the as-
sessment A consistent if K(A ) 6= /0, and we then call
clK(A ) :=

⋂
K(A ) the natural extension of A .

One of the main results of De Bock and de Cooman [9]
is their expression for the natural extension:

Theorem 6 ([9, Theorem 10]) Consider any assessment
A ⊆Q. Then A is consistent if and only if /0 /∈ A and
{0} /∈ Posi(L s

>0∪A ). Moreover, if A is consistent, then
clK(A ) = Rs(Posi(L s

>0∪A )).

Here we used the set L s(X )>0 := {{ f} : f ∈
L (X )>0}—often denoted simply by L s

>0 when it is clear
from the context what the possibility space X is—and the
following two operations on K defined by

Rs(K) := {A ∈Q : (∃B ∈ K)B \L≤0 ⊆ A}

Posi(K) :=
{{ n

∑
k=1

λ
f1:n

k fk : f1:n ∈
n×

k=1

Ak

}
: n ∈ N,

A1, . . . ,An ∈ K,
(
∀ f1:n ∈

n×
k=1

Ak

)
λ

f1:n
1:n > 0

}
for all K in K. As usual, we use the short-hand notation
f1:n := ( f1, . . . , fn) for any sequence ( f1, . . . , fn).

For arbitrary sets of desirable gamble sets K, we
have K ⊆ Rs(K),1 and K ⊆ Posi(K),2 and therefore K ⊆
Rs(Posi(K)). For coherent sets of desirable gamble sets K
however, Theorem 6 implies that K = Rs(K) = Posi(K) =
Rs(Posi(K)).

1. To see this, note that B \L≤0 ⊆ B for every B in K.
2. To see this, it suffices to choose n := 1, A1 := A ∈ K, and λ

f1:1
1:1 := 1

for all f1:1 in×1

k=1
A1 = A in the definition of the Posi operator.

In our earlier work [21, Theorem 1], we have found
expressions for the characterisation of consistency and
the natural extension of rejection functions. The previ-
ous result was obtained in a slightly more general setting:
instead of requiring Axiom R3, we required two strictly
weaker axioms. For any given assessment A , the result-
ing natural extension is therefore a less informative—more
conservative—rejection function that the one determined
by clK(A ). However, this setting was too general to ob-
tain a representation in terms of binary preferences, as our
counterexample in [21, Section 5.1] shows. As proved by
De Bock and de Cooman [9, Theorem 7], the current ax-
iomatisation does guarantee representation in terms of sets
of desirable gambles.

In order to illustrate Theorem 6, consider the follow-
ing example, which we will also use in Section 2.3 as an
example of a non-binary set of desirable gamble sets.

Example 1 Consider the situation where you have a coin
with two identical sides of unknown type: either both sides
are heads (H) or tails (T). The random variable X that
represents the outcome of a coin flip assumes a value in the
finite possibility space X = {H,T}. This assessment is im-
portant for inference purposes: for instance, in a sequence
of outcomes of successive flips from this coin, observing
one of the outcomes immediately fixes all the other out-
comes. As we will see in the follow-up of this example in
Section 2.3, this situation cannot be modelled using sets of
desirable gambles in a satisfactory way: we need to use a
set of desirable gamble sets instead.

How do we translate this situation into an assessment
A ? Since either both sides are heads or tails, we take
this to mean that at least one of the gambles −I{H}+ ε or
−I{T}+δ , are preferred to 0, for any real ε > 0 and δ > 0.
Therefore, we let the assessment that reflects this situation
be given by3

A := {{−I{H}+ ε,−I{T}+δ} : ε,δ ∈ R>0}. (2)

To show that this assessment is consistent, we first find an
expression for Posi(L s

>0∪A ):

Lemma 7 For the assessment A of Equation (2), we have

Posi(L s
>0∪A )

= {A ∈Q : ((∃h1,h2 ∈ A)(h1(T)> 0 and h2(H)> 0))
or A∩L s

>0 6= /0}
= Rs({{h1,h2} : h1,h2 ∈L6≤0 and (h1(T),h2(H))> 0}).

To show that our assessment is consistent, by Theorem 6
we need to show that /0 /∈ A —which is clearly true—
and {0} /∈ Posi(L s

>0 ∪A ). So we focus on showing that
{0} /∈ Posi(L s

>0 ∪A ). Using Lemma 7 we know that
Posi(L s

>0 ∪A ) consists of the supersets of gamble sets

3. We denote by R>0 the set of (strictly) positive real numbers.
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{h1,h2} where none of h1 and h2 are equal to 0, so
we find immediately that indeed {0} /∈ Posi(L s

>0 ∪A ).
Therefore A is a consistent assessment, and by Theo-
rem 6 its natural extension is given by the coherent set
of desirable gamble sets Rs(Posi(L s

>0∪A )). What is this
Rs(Posi(L s

>0∪A ))? Thanks to Lemma 7, this can be eas-
ily found: since Rs(Rs(K)) = Rs(K) for any gamble set
K, we immediately find that the natural extension of A
is Rs({{h1,h2} : h1,h2 ∈ L6≤0 and (h1(T),h2(H)) > 0});
this is thus the smallest coherent set of desirable gamble
sets that corresponds to our belief that the coin has two
identical sides of unknown type. �

2.2. Sets of desirable gambles

Since we have taken to mean “A ∈ K” that A contains at
least one gamble that is desirable, the singleton elements of
K play an important role: if { f} ∈ K, then the gamble f is
desirable. Given a set of desirable gamble sets, we collect
in

DK := { f ∈L : { f} ∈ K} (3)

the gambles that are considered desirable, and call it the set
of desirable gambles based on K.

Sets of desirable gambles can therefore be seen as special
sets of desirable gamble sets. In the recent years, there has
been much interest in sets of desirable gambles on its own,
without reference to sets of desirable gamble sets or choice
functions (see for instance [1, Chapter 1] or [3, 14, 17]).
A set of desirable gambles D is simply a subset of L ; we
collect in D :=P(L ) all the sets of desirable gambles. We
focus on the special subclass of coherent sets of desirable
gambles:

Definition 8 (Coherent set of desirable gambles) A set
of desirable gambles D is called coherent if for all f and g
in L , and λ and µ in R:

D1. 0 /∈ D;
D2. L>0 ⊆ D;
D3. if f,g ∈ D and (λ ,µ)> 0, then λ f +µg ∈ D.

We collect all the coherent sets of desirable gambles in
D(X ), often simply denoted by D when it is clear from the
context what the possibility space X is.

Just as we did for sets of desirable gamble sets, we call
the set of desirable gambles D1 at most as informative as
set of desirable gambles D2 if D1 ⊆ D2. The partially or-
dered set (D,⊆) is a complete meet-semilattice. The natural
extension is defined in a similar way as for sets of desirable
gamble sets: an assessment A⊆L is called consistent if
D(A) := {D ∈ D : A⊆ D} is non-empty. If this is the case,
clD(A) :=

⋂
D(A) is called the natural extension of A. The

expression for the natural extension is remarkably similar
to the one in Theorem 6:

Theorem 9 ([12, Theorem 1]) Consider any assessment
A⊆L . Then A is consistent if and only if 0 /∈ posi(L>0∪
A). Moreover, in that case clD(A) = posi(L>0∪A).

In this theorem, we used the operation posi on D:

posi(A) :=
{ n

∑
k=1

λk fk : n ∈ N, f1, . . . , fn ∈ A,λ1:n > 0
}
,

for all A⊆L .

2.3. Connection between sets of desirable gamble sets
and sets of desirable gambles

Given a set of desirable gamble sets K, its corresponding set
of desirable gambles DK is uniquely given by Equation (3),
and it is coherent if K is [9, Proposition 6]. On the other
hand, a coherent set of desirable gambles D may have
multiple sets of desirable gamble sets corresponding to it
by Equation (3), in the sense that the collection

KD := {K ∈K : DK = D}

may have more than one element. However, there is always
a unique least informative one:

Proposition 10 Given a coherent set of desirable gambles
D, the infimum infKD of its compatible coherent sets of de-
sirable gamble sets is the coherent set of desirable gamble
sets KD := {A ∈Q : A∩D 6= /0}.

The coherent sets of desirable gamble sets of the form
KD with D ∈ D, are particularly important. Since they are
completely determined by pairwise comparison (of gam-
bles in D with 0), they are called binary. De Bock and de
Cooman [9] established a representation result of coherent
sets of desirable gamble sets, in terms of binary ones:

Theorem 11 ([9, Theorem 7]) Every coherent set of de-
sirable gamble sets K is dominated by at least one binary
set of desirable gamble sets: D(K) := {D ∈ D : K ⊆ KD}
is non-empty. Moreover, K =

⋂
{KD : D ∈ D(K)}.

This theorem generalises the important representation result
of Seidenfeld et al. [18, Theorem 4] to a non-Archimedean
setting, where the atoms that fulfil the representation
are now coherent sets of desirable gambles, rather than
(Archimedean) probability mass functions. In order to ob-
tain their result, Seidenfeld et al. needed two additional
axioms: an Archimedean one, guaranteeing an appropri-
ate level of continuity, and a mixing axiom, which renders
Walley–Sen maximality incompatible with coherent choice
functions. De Bock and de Cooman [9] let go of these two
axioms, and were able to prove the general representation
Theorem 11. Additionally, they also considered the effect
of adding Seidenfeld et al. [13, 18]’s mixing axiom, while
still abstaining from Archimedeanity. With this additional
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axiom, they have established a more specialised represen-
tation in terms of lexicographic sets of desirable gambles,
which are exactly [2, 20] the sets of desirable gambles that
correspond to lexicographic probability systems (with no
non-trivial Savage-null events).

Example 2 We continue our previous Example 1, where
we derived the coherent set of desirable gamble sets K :=
Rs({{h1,h2} : h1,h2 ∈L6≤0 and (h1(T),h2(H))> 0}) that
corresponds to our belief that the coin has two identical
sides of unknown type. In this example we wonder whether
this can be retrieved using binary comparisons: is K a
binary set of desirable gamble sets? If K was a binary set of
desirable gamble sets, then K = KD for the set of desirable
gambles D := DK , as is shown in [9, Proposition 5].

So let us first find DK . Using Equation (3), we find that

DK = { f ∈L : { f} ∈ K}
= { f ∈L : (∃h1,h2 ∈ { f})

h1,h2 ∈L6≤0,(h1(H),h2(T))> 0}
= { f ∈L : f ∈L6≤0, f > 0}= L>0,

so DK = L>0 is the least informative coherent set of de-
sirable gambles, also called the vacuous set of desirable
gambles: using pairwise comparisons only, we cannot dis-
tinguish the current situation with a vacuous belief. This
shows why sets of desirable gambles cannot model this in
a satisfactory way. Since KDK = {A ∈Q : A ∩L>0 6= /0}
does not contain the gamble set {−I{H}+ 1

4 ,−I{T}+
1
4}

while K does, this also shows that K is a non-binary set of
desirable gamble sets.

How can we represent this K? In other words, what
is the representing set D(K) of desirable gambles from
Theorem 11? To find this set, consider first the two special
coherent sets of desirable gambles

DH := { f ∈L : f(H)> 0}∪L>0

DT := { f ∈L : f(T)> 0}∪L>0

which correspond to (practical) certainty about H and T,
respectively. Indeed, if the subject is certain about H, then
any gamble that yields a positive gain when H occurs,
however small, will be desirable. Actually, in very much the
same way as in Example 1, DH and DT can be retrieved as
the natural extensions of the consistent assessment AH :=
{−I{T}+ ε : ε ∈ R>0} and AT := {−I{H}+δ : δ ∈ R>0},
respectively.

To find D(K), we need to find all the coherent sets of
desirable gambles D such that K ⊆ KD . So consider any A
in K. This implies that there is a subset {h1,h2} ⊆ A such
that h1,h2 ∈L6≤0 and (h1(T),h2(H))> 0. Then A∩DH 6=
/0 and A ∩DT 6= /0, so A ∈ KDH and A ∈ KDT . Therefore
DH,DT ∈ D(K). But DH and DT are the only elements of
D(K).4 So we find by Theorem 11 that K = KDH ∩KDT .

4. To see this, assume ex absurdo that another coherent set of desirable
gambles D belongs to D(K), so K ⊆ KD . This would imply that

This is therefore an example of a conceptually easy
type of belief that cannot be modelled by sets of desirable
gambles—and therefore also not by credal sets or lower
previsions—in a satisfactory way, but can if non-binary sets
of desirable gamble sets are used instead. �

3. Conditioning

Consider a variable X that assumes values in a non-empty
possibility space X . Suppose that we have a belief model
about X , be it a coherent set of desirable gamble sets on
L or a coherent set of desirable gambles on X , or—less
general—just a single probability mass function on X , or a
set of them. When new information becomes available, in
the form of ‘X assumes a value in some (non-empty) subset
E of X’, we can take this into account by conditioning our
belief model on E.

For some of these belief models, such as (sets of) prob-
ability mass functions, conditioning on events of proba-
bility zero can be problematic, because, roughly speaking,
Bayes’s Rule typically requires to divide by zero in these
situations. However, working with sets of desirable gam-
bles is one way of overcoming this problem. In this section,
we will see why, and explain that sets of desirable gamble
sets do not suffer from this problem either.

We will let any event, except for the (trivially) impossi-
ble event /0, serve as a conditioning event. We collect the
allowed conditioning events in

P /0(X ) := {E ⊆X : E 6= /0}.

We will first review how conditioning is done using sets
of desirable gambles (see [12] for more details). After that,
we will introduce conditional sets of desirable gamble sets,
and study the connection between both cases. Given the
discussion in Section 2.3, this immediately translates to
rejection functions and choice functions as well.

There are multiple equivalent definitions for conditional
sets of desirable gambles. Most of them, for instance those
in [4, 15, 23, 24] result in a conditional set of desirable
gambles on X . However, we find it more useful and con-
venient that a conditional model is defined on gambles on
E, rather than on X , because, after getting to know that E
occurs, the possibility space becomes effectively E.

Definition 12 ([12, Equation (17)]) Consider any set of
desirable gambles D ⊆L (X ) and any conditioning event
E in P /0(X ), we define the conditional set of desirable
gambles DcE ⊆L (E) as

DcE := { f ∈L (E) : IE f ∈ D}.

−I{H}+ ε,−I{T}+δ /∈ D for some ε and δ in R>0. But the gamble
set {−I{H}+ ε,−I{T}+δ} belongs to K, a contradiction.
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In this definition, we let for any E in P /0(X ) and any
gamble f on E its multiplication IE f denote the gamble on
X defined by

(IE f )(x) :=

{
f (x) if x ∈ E
0 if x /∈ E

(4)

for all x in X . Note that, for any gambles f and g on
E, we have f 6= g⇔ IE f 6= IEg, and, as a consequence,
f < g⇔ IE f < IEg.

It was proved by de Cooman and Quaghebeur [12, Propo-
sition 8] that conditioning preserves coherence: if D is a
coherent set of desirable gambles, then so is DcE, for any
E in P /0(X ). This explains why sets of desirable gambles
do not suffer from conditioning on events of probability
zero: DcE is well-defined and coherent for every condi-
tioning event E in P /0(X ), even if E has probability zero
according to some, or all, of the probabilities induced by
D.

For sets of desirable gamble sets, conditioning can be
defined using the same simple underlying ideas:

Definition 13 (Conditioning) Given any set of desirable
gamble sets K and any conditioning event E in P /0(X ),
we define the conditional set of desirable gamble sets KcE
on L (E) as

KcE := {A ∈Q(L (E)) : IEA ∈ K},

where for any A in Q(L (E)) and E in P /0(X ), we let
IEA := {IEg : g ∈ A} be a set of gambles on X .

Proposition 14 Consider any set of desirable gamble sets
K on L (X ) and any conditioning event E in P /0. If K is
coherent, then so is KcE.

Is Definition 13 a suitable definition of conditioning?
One of the useful properties our definition has, is that it
preserves coherence, as shown in Proposition 14, and there-
fore sets of desirable gamble sets also do not suffer from
conditioning on events of probability zero. But does it also
generalise the Definition 12 of conditional sets of desirable
gambles, or in other words, does Definition 13 reduce to
the Definition 12 of conditioning sets of desirable gambles
when only considering binary choice? Of course, to inves-
tigate this, we must keep in mind the connection between
sets of desirable gamble sets and sets of desirable gambles,
explained in Section 2.3.

For our two conditioning rules—the one in Definition 12
for sets of desirable gambles and the one in Definition 13
for sets of desirable gamble sets—to be a match, we must
prove that: (i) the conditioning rule for sets of desirable
gamble sets reverts to the known conditioning rule for the
corresponding sets of desirable gambles, and (ii) in the
special case of purely binary choice, the conditioning for
sets of desirable gamble sets coincides with the condition-
ing rule for desirability. Mathematically, (i) means that

DKcE = DKcE for any coherent set of desirable gamble sets
K and conditioning event E in P /0(X ), and (ii) means that
KDcE = KDcE , for any coherent set of desirable gambles D,
and any conditioning event E in P /0(X ). The next propo-
sition guarantees that both these conditions are satisfied:

Proposition 15 Consider any coherent set of desirable
gamble sets K, any coherent set of desirable gambles
D, and any conditioning event E in P /0(X ). Then
DKcE = DKcE and KDcE = KDcE . Furthermore, KcE =⋂
{KDcE : D ∈ D(K)}.

The last statement of Proposition 15 guarantees that the
conditional set of desirable gamble sets KcE can be re-
trieved by conditioning every element of K’s representing
set D(K) from Theorem 11.

4. Multivariate sets of desirable gamble sets
In this section, we will generalise the concepts of marginal-
isation, weak (cylindrical) extension and irrelevant natural
extension introduced by de Cooman and Miranda for sets of
desirable gambles [11] to choice models. We will provide
the linear space of gambles, on which we define our sets of
desirable gamble sets, with a more complex structure: we
will consider the vector space of all gambles whose domain
is a Cartesian product of a finite number of finite possibility
spaces. More specifically, consider n in N variables X1, . . . ,
Xn that assume values in the finite possibility spaces X1,
. . . , Xn, respectively. Belief models about these variables
X1, . . . , Xn will be defined on gambles on X1, . . . , Xn.
We may also consider gambles on the Cartesian product
×n

k=1 Xk, giving rise to the ∏
n
k=1|Xk|-dimensional linear

space L (×n
k=1 Xk).

4.1. Basic notation & cylindrical extension

For every non-empty subset I ⊆ {1, . . . ,n} of indices,
we let XI be the tuple of variables that takes values in
XI :=×r∈I Xr. We will denote generic elements of XI as
xI or zI , whose components are xi := xI(i) and zi := zI(i), for
all i in I. As we did before, when I = {k, . . . , `} for some k, `
in {1, . . . ,n} with k ≤ `, we will use as a short-hand nota-
tion Xk:` := X{k,...,`}, taking values in Xk:` := X{k,...,`} and
whose generic elements are denoted by xk:` := x{k,...,`} =
(xk, . . . ,x`).

We assume that the variables X1, . . . , Xn are logically
independent, meaning that for each non-empty subset I of
{1, . . . ,n}, xI may assume every value in XI .

It will be useful for any gamble f on X1:n, any non-
empty proper subset I of {1, . . . ,n} and any xI in XI , to
interpret the partial map f(xI,·) as a gamble on XIc , where
Ic := {1, . . . ,n}\ I. Likewise, for any set A of gambles on
X1:n, we let A(xI,·) := { f(xI,·) : f ∈ A} be a correspond-
ing set of gambles on XI .
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We will need a way to relate gambles on different do-
mains:

Definition 16 (Cylindrical extension) Given two dis-
joint and non-empty subsets I and I′ of {1, . . . ,n} and any
gamble f on XI , we let its cylindrical extension f ∗ to XI∪I′

be defined by

f ∗(xI,xI′) := f(xI) for all xI in XI and xI′ in XI′ .

Similarly, given any set of gambles A ⊆L (XI), we let its
cylindrical extension A∗ ⊆L (XI∪I′) be defined as A∗ :=
{ f ∗ : f ∈ A}.

Formally, f ∗ belongs to L (XI∪I′) while f belongs to
L (XI). However, f ∗ is completely determined by f and
vice versa: they clearly only depend on the value of XI , and
as such, they contain the same information and correspond
to the same transaction. They are therefore indistinguish-
able from a behavioural point of view.

Remark 17 As in [10, 11], we will frequently use the sim-
plifying device of identifying a gamble f on L (XI) with
its cylindrical extension f ∗ on L (XI∪I′), for any disjoint
and non-empty subsets I and I′ of the index set {1, . . . ,n}.
This convention allows us for instance to identify L (XI)
with a subset of L (X1:n), and, as another example, for
any set A ⊆L (X1:n), to regard A∩L (XI) as those gam-
bles in A that depend on the value of XI only. Therefore,
for any event E in P /0(XI) we can identify the gamble IE
with IE×XIc , and hence also the event E with E×XIc . This
device for instance also allows us to write, for any f on XI
and g on XI∪I′ , that f ≤ g⇔ (∀xI ∈XI,xI′ ∈XI′) f(xI)≤
g(xI,xI′). �

4.2. Marginalisation and weak extension

Suppose we have a set of desirable gamble sets K on
L (X1:n) modelling a subject’s beliefs about the vari-
able X1:n. What is the information that K contains about
XO , where O is some non-empty subset of the index set
{1, . . . ,n}? Finding this information can be done through
marginalisation.

Definition 18 (Marginalisation) Given any non-empty
subset O of {1, . . . ,n} and any set of desirable gamble
sets K on L (X1:n), its marginal set of desirable gamble
sets margOK on L (XO) is defined as

margOK :={A ∈Q(L (XO)) : A ∈ K}
=K∩Q(L (XO)).

We use the simplifying device of Remark 17 of identify-
ing A with a subset of L (X1:n). Without resorting to this
convention, we can characterise margOK as:

(∀A ∈Q(L (XO))) A ∈margOK⇔ A∗ ∈ K.

It follows at once from Definition 18 that marginalisation
preserves the order: if K1 ⊆ K2, then margOK1 ⊆margOK2,
for all sets of desirable gamble sets K1 and K2 on L (X1:n).
Marginalisation also preserves coherence:

Proposition 19 Consider any set of desirable gamble sets
K on L (X1:n) and any non-empty subset O of {1, . . . ,n}.
If K is coherent, then so is margOK.

Let us compare with sets of desirable gambles. De
Cooman and Miranda [11] defined, for any non-empty sub-
set O of {1, . . . ,n} and any set of desirable gambles D, its
marginal set of desirable gambles margOD on L (XO) as

margOD := { f ∈L (XO) : f ∈ D}= D∩L (XO).

Let us ascertain that the definition of marginalisation
reduces, in the case of binary choice, to the one for sets of
desirable gambles:

Proposition 20 Consider any non-empty subset O of
{1, . . . ,n}, any set of desirable gamble sets K on L (X1:n),
and any set of desirable gambles D ⊆L (X1:n). Then

margODK = DmargO K and margOKD = KmargO D .

Furthermore, margOK =
⋂
{KmargO D : D ∈ D(K)}.

The last statement of this proposition guarantees that the
marginal set of desirable gamble sets margOK can be re-
trieved by marginalising every element of K’s representing
set D(K).

Now that marginalisation is in place, and that we know
that it coincides with the eponymous concept for sets of
desirable gambles in the case of pairwise choice, we are
ready to look for some kind of inverse operation to it. Sup-
pose we have a coherent set of desirable gamble sets KO on
L (XO) modelling a subject’s belief about XO , where O
is a non-empty subset of {1, . . . ,n}. We want to extend KO
to a coherent set of desirable gamble sets on L (X1:n) that
represents the same beliefs. So we are looking for a coher-
ent set of desirable gamble sets K on L (X1:n) such that
margOK = KO and that is as least informative as possible.
It it exists, then we call K the weak extension of KO .

We study this notion of weak extension in more detail.
Given a non-empty subset O of {1, . . . ,n} and a coherent
set of desirable gamble sets KO on L (XO), an assessment
based on it that is important for the weak extension, is

A 1:n
KO

:= {A∗ : A ∈ KO} ⊆Q(L (X1:n)).

To make clear that A 1:n
KO

is a collection of sets of gambles
on X1:n, we made the cylindrical extension explicit by
writing A∗. Using our simplifying device of Remark 17
however, we can equivalently write A 1:n

KO
= KO—and we

will do this throughout—and interpret it as a collection of
sets of gambles on X1:n, and therefore as an assessment for
sets of desirable gamble sets on L (X1:n).

It turns out that the weak extension always exists:

7
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Proposition 21 (Weak extension) Consider any non-
empty subset O of {1, . . . ,n} and any coherent set of desir-
able gamble sets KO on L (XO). Then the least informa-
tive coherent set of desirable gamble sets on L (X1:n) that
marginalises to KO is given by

ext1:n(KO) := Rs(Posi(L s(X1:n)>0∪A 1:n
KO

)),

and it satisfies margO(ext1:n(KO)) = KO .

How is this result connected with the weak extension for
sets of desirable gambles? De Cooman and Miranda [11,
Proposition 7] show that, given any non-empty subset O of
{1, . . . ,n} and any coherent set of desirable gambles DO ⊆
L (XO), its weak extension extD1:n(DO)⊆L (X1:n)—the
least informative coherent set of desirable gambles on
X1:n that marginalises to DO—exists and is given by
extD1:n(DO) := posi(L (X1:n)>0 ∪DO). We show that the
weak extension ext1:n(KO) of a coherent set of desirable
gamble sets KO on L (XO) can also be retrieved by taking
the weak extension of every element of KO’s representing
set D(KO) from Theorem 11:

Proposition 22 Consider any non-empty subset O of
{1, . . . ,n} and any coherent set of desirable gamble sets KO
on L (XO). Then

ext1:n(KO) =
⋂
{KextD1:n(DO ) : DO ∈ D(KO)}.

4.3. Conditioning on variables

In Section 3 we have seen how we can condition sets of
desirable gamble sets on events. Here, we take a closer look
at conditioning in a multivariate context.

Suppose we have a set of desirable gamble sets Kn on
L (X1:n), representing a subject’s beliefs about the value
of X1:n. Assume now that we obtain the information that the
I-tuple of variables XI—where I is a non-empty subset of
{1, . . . ,n}—assumes a value in a certain non-empty subset
EI of XI—so EI belongs to P /0(XI). There is no new
information about the other variables XIc . How can we
condition Kn using this new information?

This is a particular instance of Definition 13, with the
following specifications: X = X1:n and E = EI ×XIc .
The indicator IE of the conditioning event E satisfies
IE(x1:n)= IEI (xI) for all x1:n in X1:n, and taking Remark 17
into account, therefore IE = IEI . Equation (4) defines the
multiplication of a gamble f on EI×XIc with IEI to be a
gamble IEI f on X1:n, given by, for all x1:n in X1:n:

IEI f(x1:n) =

{
f(x1:n) if xI ∈ EI

0 if xI /∈ EI
(5)

and the multiplication of IEI with a set A of gambles on EI×
XIc is the set IEI A = {IEI f : f ∈ A} of gambles on X1:n.

Now that we have instantiated all the relevant aspects of
Definition 13, we are ready to find the conditional set of
desirable gamble sets KncEI , given a joint set of desirable
gamble sets Kn on L (X1:n):

KncEI = {A ∈Q(L (EI×XIc)) : IEI A ∈ Kn}.

The conditional set of desirable gamble sets KncEI is de-
fined on gambles on EI×XIc . However, usually—see, for
instance, [6, 11]—conditioning on information about XI
results in a model on XIc . We therefore consider

margIc(KncEI) = {A ∈Q(L (XIc)) : IEI A ∈ Kn}

as the set of desirable gamble sets that represents the condi-
tional beliefs about XIc , given that XI ∈ EI . In this context,
the multiplication IEI f of IEI and a gamble f in A is defined
through Equation (5):

IEI f(x1:n) =

{
f(xIc) if xI ∈ EI

0 if xI /∈ EI
for all x1:n in X1:n.

Note that, in the particular case of conditioning on a
singleton—say, EI = {xI} for some xI in XI—the set KncxI
of desirable gamble sets5 is on L ({xI} ×XIc). Every
gamble f on {xI}×XIc can be uniquely identified with a
gamble f(xI,·) on XIc , and therefore {xI}×XIc can be
identified with XIc . Therefore the resulting set of desir-
able gamble sets KncxI can be identified with its marginal
margIc(KncxI).

Propositions 14 and 19, guarantee the coherence of
margIc(KncEI), for any coherent Kn.

As is the case for desirability ([11, Proposition 9]), the
order of marginalisation and conditioning can be reversed,
under some conditions:

Proposition 23 Consider any coherent set of desirable
gamble sets Kn on L (X1:n), any disjoint and non-empty
subsets I and O of {1, . . . ,n}, and any EI in P /0(XI). Then

margO(KncEI) = margO((margI∪OKn)cEI).

4.4. Irrelevant natural extension

Now that the basic operations of multivariate sets of de-
sirable gamble sets—marginalisation, weak extension and
conditioning—are in place, we are ready to look at a simple
type of structural assessment. The assessment that we will
consider, is that of epistemic irrelevance.

Definition 24 (Epistemic (subset)-irrelevance)
Consider any disjoint and non-empty subsets I and
O of {1, . . . ,n}. A set of desirable gamble sets Kn on

5. Actually, since the conditioning event is {xI}, we should write
Knc{xI} rather than KncxI , but since no confusion can arise, and
for notational simplicity, we will use the latter notation. A similar
choice has been made by de Cooman and Miranda in [11].
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L (X1:n) is said to satisfy epistemic irrelevance of XI to
XO when

margO(KncEI) = margOKn for all EI in P /0(XI).

The idea behind this definition is that observing that XI
belongs to EI turns Kn into the conditioned set of desirable
gamble sets KncEI on L (EI×XIc)⊇L (XO), so requir-
ing that learning that XI belongs to EI does not affect the
subject’s beliefs about XO , amounts to requiring that the
marginal models of Kn and KncEI should be equal.

Epistemic irrelevance can be reformulated in an interest-
ing and slightly different manner:

Proposition 25 Consider any coherent set of desirable
gamble sets Kn on L (X1:n), and any disjoint and non-
empty subsets I and O of {1, . . . ,n}. Then the following
statements are equivalent:

(i) margO(KncEI) = margOKn for all EI in P /0(XI);
(ii) A ∈ Kn⇔ IEI A ∈ Kn, for all A in Q(L (XO)) and

EI in P /0(XI).

Epistemic irrelevance assessments are useful in con-
structing sets of desirable gamble sets on larger domains
from other ones on smaller domains. Suppose we have a
set of desirable gamble sets KO on L (XO), and an as-
sessment that XI is epistemically irrelevant to XO , where
I and O are disjoint and non-empty subsets of {1, . . . ,n}.
How can we combine KO and this irrelevance assessment
into a coherent set of desirable gamble sets on L (XI∪O),
or more generally, on L (X1:n)? We want this new set of
desirable gamble sets furthermore to be as least informative
as possible.

The following set will play a crucial role:

A irr
I→O := {IEI AO : AO ∈ KO and EI ∈P /0(XI)} (6)

which we will interpret as an assessment on L (XI∪O).

Theorem 26 (Irrelevant natural extension) Consider
any disjoint and non-empty subsets I and O of {1, . . . ,n},
and any coherent set of desirable gamble sets KO on
L (XO). The least informative coherent set of desirable
gamble sets on L (X1:n) that marginalises to KO and
that satisfies epistemic irrelevance of XI to XO is given by
extirr1:n(KO) := ext1:n(Kirr

I∪O), where

Kirr
I∪O := Rs(Posi(L s(XI∪O)>0∪A irr

I→O)).

Furthermore,

extirr1:n(KO) =
⋂
{KextD1:n(D) : D ∈ D(Kirr

I∪O)}.

The final statement of this theorem guarantees that the
irrelevant natural extension that marginalises to a set of
desirable gamble sets KO can be retrieved by extending
every element of Kirr

I∪O’s representing set D(Kirr
I∪O) from

Theorem 11.

5. Conclusions

We have studied the irrelevant natural extension in the
framework of choice functions. To define this, we intro-
duced conditioning and marginalisation in this framework.
We related our definitions and results with the existing def-
initions and results in the framework of sets of desirable
gambles, and showed that they match with each other. The
results in this paper are important because they are a first
step for establishing a theory of credal networks with choice
functions. Besides their generality, such credal networks
would have the advantage that the local models are easy
to elicit: choice functions can be assessed directly from a
subject, simply by collecting the gambles she rejects from
within any given set of gambles.

However, one important issue in this respect is the lack
of an expression for the independent natural extension for
choice functions. The independent natural extension is a
symmetric version of the irrelevant natural extension: if XI
is independent to XO , then both XI is irrelevant to XO , and
vice versa. A possible future goal is to investigate the inde-
pendent natural extension in this framework. We expect the
representation result of De Bock and de Cooman [9, The-
orem 7] to be crucial for this. A first step in this direction,
would be to establish the following representation of the
irrelevant natural extension:

extirr1:n(KO) =
⋂
{K

extD,irr
1:n (DO )

: DO ∈ D(KO)}

where extD,irr
1:n (DO) is the irrelevant natural extension for

sets of desirable gambles, established in [11]. This is a
conjecture of us, based on some preliminary insight, but
we have no proof as of yet.

In addition, it would also be interesting to consider other,
intermediate notions of irrelevance and independence, such
as the notion of subset irrelevance considered in [7], and
more generally, the compatibility of choice functions with
other structural assessments, such as weak and strong in-
variance.
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Appendix A. Proofs
Proof [Proof of Lemma 7] For the sake of brevity, we
denote

K1
H,T

:= {A ∈Q : ((∃h1,h2 ∈ A)(h1(T)> 0 and h2(H)> 0))
or A∩L s

>0 6= /0},
K2

H,T

:= Rs({{h1,h2} : h1,h2 ∈L6≤0,(h1(T),h2(H))> 0}).

We will show (i) that Posi(L s
>0 ∪A ) ⊆ K1

H,T, (ii) that
K1

H,T ⊆ K2
H,T, and (iii) that K2

H,T ⊆ Posi(L s
>0∪A ).

For (i)—to show that Posi(L s
>0∪A )⊆ K1

H,T—consider
any gamble set A in Posi(L s

>0 ∪A ). This means that
there are n in N, A1, . . . , An in L s

>0 ∪A , and, for all
f1:n in×n

k=1 Ak, coefficients λ
f1:n

1:n > 0, such that A ={
∑

n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak

}
. Without loss of general-

ity, assume that A1, . . . ,A` ∈A and A`+1, . . . ,An ∈L s
>0 for

some ` in {0, . . . ,n}. Therefore, we may denote, also with-
out loss of generality, A1 = {−I{H}+ ε1,−I{T}+δ1}, . . . ,
A` = {−I{H}+ ε`,−I{T}+ δ`}, A`+1 = {g`+1}, . . . , An =
{gn}, where ε1, δ1, . . . , ε`, δ` are elements of R>0 and g`+1,
. . . , gn elements of L>0. If `= 0 or λ

f1:n
1:` = 0 for some f1:n

in×n
k=1 Ak—and therefore necessarily λ

f1:n
`+1:n > 0—then

we have that ∑
n
k=1 λ

f1:n
k fk = ∑

n
k=`+1 λ

f1:n
k gk is a gamble in

L>0, so we find that
{

∑
n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak

}
=

A∩L s
>0 6= /0. If, on the other hand, `≥ 1 and λ

f1:n
1:` 6= 0—

and hence λ
f1:n

1:` > 0—for every f1:n in×n
k=1 Ak, then for the

two sequences of gambles f H
1:n = ( f H

1 , . . . , f H
n ) := (−I{H}+

ε1, . . . ,−I{H}+ε`,g`+1, . . . ,gn) and f T
1:n = ( f T

1 , . . . , f T
n ) :=

(−I{T} + δ1, . . . ,−I{T} + δ`,g`+1, . . . ,gn) in×n
k=1 Ak we

have that

h1 :=
n

∑
k=1

λ
f H
1:n

k f H
k =

`

∑
k=1

λ
f H
1:n

k f H
k +

n

∑
k=`+1

λ
f H
1:n

k gk

≥
`

∑
k=1

λ
f H
1:n

k f H
k

=−I{H}
`

∑
k=1

λ
f H
1:n

k +
`

∑
k=1

λ
f H
1:n

k εk

and, similarly,

h2 :=
n

∑
k=1

λ
f T
1:n

k f T
k ≥−I{T}

`

∑
k=1

λ
f T
1:n

k +
`

∑
k=1

λ
f T
1:n

k δk,

so h1(T) ≥ ∑
`
k=1 λ

f H
1:n

k εk > 0 and h2(H) ≥ ∑
`
k=1 λ

f T
1:n

k δk >
0. Note that both h1 and h2 belong to A, so we find that
(∃h1,h2 ∈ A)(h1(T)> 0 and h2(H)> 0). Therefore indeed
Posi(L s

>0∪A )⊆ K1
H,T.

For (ii)—to show that K1
H,T ⊆ K2

H,T—consider any gam-
ble set A in K1

H,T. Then (a) h1(T) > 0 and h2(H) > 0 for
some h1 and h2 in A, or (b) A ∩L s

>0 6= /0. If (a), then
h1,h2 ∈L6≤0, and (h1(T),h2(H))> 0, so A ∈ K2

H,T. If (b),
then h > 0 for some h in A, so for h1 := h2 := h triv-
ially h1,h2 ∈L6≤0, and (h1(T),h2(H)) = (h(T),h(H))> 0,
whence A ∈ K2

H,T. We conclude that indeed K1
H,T ⊆ K2

H,T.
For (iii)—to show that K2

H,T ⊆ Posi(L s
>0 ∪ A )—

consider any gamble set A in K2
H,T. Then A ⊇ {h1,h2} \

L≤0 = {h1,h2} for some h1 and h2 in L6≤0 such that
(h1(T),h2(H))> 0. Without loss of generality, rename the
gambles in

A = { f I
1, . . . , f I

nI
, f II

1 , . . . , f II
nII
, f III

1 , . . . , f III
nIII

, f IV
1 , . . . , f IV

nIV
},

with nI, nII, nIII and nIV in {0}∪N such that n := 2nI +
nII + 2nIII + nIV ≥ 1, gambles f I

1, . . . , f I
nI

in the positive
quadrant L>0, gambles f II

1 , . . . , f II
nII

in the second quadrant
LII := { f ∈L : f(H)< 0 < f(T)}, gambles f III

1 , . . . , f III
nIII

in the negative quadrant L≤0, and gambles f IV
1 , . . . , f IV

nIV
in the fourth quadrant LIV := { f ∈L : f(T)< 0 < f(H)}.
We must show that A belongs to Posi(L s

>0∪A ). To this
end, we will construct n gamble sets A1, . . . , An and, for
every f1:n in×n

k=1 Ak, coefficients λ
f1:n

1:n > 0 such that A ={
∑

n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

.
Let A1 := {g1} ∈L s

>0, . . . , AnI := {gnI} ∈L s
>0. We con-

sider the additional nI gamble sets AnI+1 := . . . := A2nI :=
{−I{H}+1,−I{T}+1} ∈A , in order to have enough free-
dom in selecting the coefficients λ

f1:n
1:n > 0 later on. For ev-

ery i in {1, . . . ,nII}, let A2nI+i := {−I{H}+εi,−I{T}+δ} ∈

A with εi := f II
i (T)

f II
i (T)− f II

i (H)
> 0 and δ := f IV

1 (H)

f IV
1 (H)− f IV

1 (T)
> 0

if nIV ≥ 1, otherwise δ := 1. For every i in {1, . . . ,nIII}, if
f III
i 6= 0, let A2nI+nII+i := {−I{H}+ 1

4 ,−I{T}+1} ∈A and
A2nI+nII+nIII+i := {−I{H} + 1,−I{T} + 1

4} ∈ A ; if f III
i =

0, let A2nI+nII+i := A2nI+nII+nIII+i := {−I{H}+ 1
2 ,−I{T}+

1
2} ∈A . For every i in {1, . . . ,nIV}, let A2nI+nII+2nIII+i :=

{−I{H}+1,−I{T}+δi} ∈A with δi := f IV
i (H)

f IV
i (H)− f IV

i (T)
> 0.

The set×n
k=1 Ak contains 2n−nI = 2nI+nII+2nIII+nIV se-

quences. Each such sequence f1:n is characterised by a
choice of fi in the binary set Ai—which we will denote
by {gH

i ,g
T
i }, where gH

i is the gamble in Ai of the form
−I{H}+ε and gT

i the gamble in Ai of the form−I{T}+δ—
, for every i in {nI +1, . . . ,n}. For the first nI entries f1:nI

of f1:n we have no choice but to chose f1:nI = g1:nI , since
×nI

k=1 Ak is the singleton {g1:nI}.
For any sequence f1:n in×n

k=1 Ak, define n real coeffi-
cients λ

f1:n
1:n as follows:

• Situation (a): If there is an i in {2nI +1, . . . ,2nI +nII}
such that

( f2nI+1, . . . , fi−1, fi, fi+1, . . . , f2nI+nII+nIII ,

11
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f2nI+nII+nIII+1, . . . , fn)

= (gT
2nI+1, . . . ,g

T
i−1,g

H
i ,g

T
i+1, . . . ,g

T
2nI+nII+nIII

,

gH
2nI+nII+nIII+1, . . . ,g

H
n )

or, in other words, such that fi = gH
i , (∀k ∈ {2nI +

1, . . . ,2nI +nII +nIII}\{i}) fk = gT
k , and (∀k ∈ {2nI +

nII +nIII +1, . . . ,n}) fk = gH
k , then let

λ
f1:n

i := f II
j (T)− f II

j (H)> 0 for j := i−2nI,

λ
f1:n

k := 0 for all k in {1, . . . ,n}\{i}.

• Situation (b): If there is an i in {2nI + nII + 2nIII +
1, . . . ,n} such that

( f2nI+1, . . . , f2nI+nII+nIII ,

f2nI+nII+nIII+1, . . . , fi−1, fi, fi+1, . . . , fn)

= (gT
2nI+1, . . . ,g

T
2nI+nII+nIII

,

gH
2nI+nII+nIII+1, . . . ,g

H
i−1,g

T
i ,g

H
i+1, . . . ,g

H
n ),

or, in other words, such that fi = gT
i , (∀k ∈ {2nI +

1, . . . ,2nI +nII +nIII}) fk = gT
k , and (∀k ∈ {2nI +nII +

nIII +1, . . . ,n}\{i}) fk = gH
k , then let

λ
f1:n

i := f IV
j (H)− f IV

j (T)> 0

for j := i−2nI−nII−2nIII,

λ
f1:n

k := 0 for all k in {1, . . . ,n}\{i}.

• Situation (c): If there is an i in {2nI+nII+1, . . . ,2nI+
nII +nIII} such that

( f2nI+1, . . . , fi−1, fi, fi+1, . . . , f2nI+nII+nIII ,

f2nI+nII+nIII+1, . . . , fnIII+i−1, fnIII+i, fnIII+i+1, . . . , fn)

= (gT
2nI+1, . . . ,g

T
i−1,g

H
i ,g

T
i+1, . . . ,g

T
2nI+nII+nIII

,

gH
2nI+nII+nIII+1, . . . ,g

H
nIII+i−1,g

T
nIII+i,g

H
nIII+i+1, . . . ,g

H
n ),

or, in other words, such that fi = gH
i , fnIII+i = gT

nIII+i,
(∀k ∈ {2nI +1, . . . ,2nI +nII +nIII}\{i}) fk = gT

k and
(∀k ∈ {2nI +nII +nIII +1, . . . ,n}\{nIII + i}) fk = gH

k ,
then let

λ
f1:n

i := λ
f1:n

nIII+i := 1 if f III
i−2nI+nII

= 0,

λ
f1:n

i :=−1
2
(3 f III

j (H)+ f III
j (T))> 0 and

λ
f1:n

nIII+i :=−1
2
( f III

j (H)+3 f III
j (T))> 0

for j := i−2nI−nII and if f III
j 6= 0,

λ
f1:n

k := 0 for all k in {1, . . . ,n}\{i,nIII + i}.

• Situation (d): If none of the Situations (a), (b) nor (c)
apply, and if there is an i in {nI +1, . . . ,2nI} such that

( fnI+1, . . . , fi−1, fi, fi+1, . . . , f2nI)

= (gT
nI+1, . . . ,g

T
i−1,g

H
i ,g

T
i+1, . . . ,g

T
2nI

),

or, in other words, such that fi = gH
i and (∀k ∈ {nI +

1, . . . ,2nI}\{i}) fk = gT
k , then let

λ
f1:n

i−nI
:= 1,

λ
f1:n

k := 0 for all k in {1, . . . ,n}\{i−nI}.

• Situation (e1): If A∩L>0 6= /0—so nI ≥ 1—and none
of the Situations (a), (b), (c) nor (d) apply, then let

λ
f1:n

1 := 1 and λ
f1:n

2:n := 0.

• Situation (e2): If A∩L>0 = /0—so nII≥ 1 and nIV≥ 1
because (h1(T),h2(H)) > 0—and none of the Situa-
tions (a), (b), (c) nor (d) apply, then let, with i :=
2nI +1,

λ
f1:n

i := f II
1 (T)− f II

1 (H)> 0 if fi = gH
i ,

λ
f1:n

i := f IV
1 (H)− f IV

1 (T)> 0 if fi = gT
i ,

λ
f1:n

k := 0 or all k in {1, . . . ,n}\{i}.

In this way, we have defined coefficients λ
f1:n

1:n > 0 for every
f1:n in×n

k=1 Ak. It only remains to show, with our choices
of λ

f1:n
1:n > 0, that A =

{
∑

n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

.
We first prove that A ⊆

{
∑

n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

.
To show that f II

j ∈
{

∑
n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

for ev-
ery j in {1, . . . ,nII}, consider any f1:n in×n

k=1 Ak such
that f1:n satisfies the conditions of Situation (a) for i :=
j + 2nI, which is then an element of {2nI + 1, . . . ,2nI +

nII}. Then ∑
n
k=1 λ

f1:n
k fk = ( f II

j (T)− f II
j (H))gH

i = ( f II
j (T)−

f II
j (H))

(
−I{H} +

f II
i (T)

f II
i (T)− f II

i (H)

)
= ( f II

j (H)− f II
j (T))I{H} +

f II
j (T) = f II

j , so indeed f II
j ∈

{
∑

n
k=1 λ

f1:n
k fk : f1:n ∈

×n
k=1 Ak

}
.

To show that f IV
j ∈

{
∑

n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

for
every j in {1, . . . ,nIV}, consider any f1:n in×n

k=1 Ak such
that f1:n satisfies the conditions of Situation (b) for i :=
j + 2nI + nII + 2nIII, which is then an element of {2nI +

nII + 2nIII + 1, . . . ,n}. Then ∑
n
k=1 λ

f1:n
k fk = ( f IV

j (H) −

f IV
j (T))gT

i = ( f IV
j (H)− f IV

j (T))
(
−I{T}+

f IV
i (H)

f IV
i (H)− f IV

i (T)

)
=

( f IV
j (T)− f IV

j (H))I{T}+ f IV
j (H) = f IV

j , so indeed f IV
j ∈{

∑
n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

.
To show that f III

j ∈
{

∑
n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

for every j in {1, . . . ,nIII}, consider any f1:n in×n
k=1 Ak

such that f1:n satisfies the conditions of Situation (c)
for i := j + 2nI + nII, which is then an element of
{2nI + nII + 1, . . . ,2nI + nII + nIII}. Then ∑

n
k=1 λ

f1:n
k fk =

− 1
2 (3 f III

j (H) + f III
j (T))gH

i − 1
2 ( f III

j (H) + 3 f III
j (T))gT

i =

− 1
2 (3 f III

j (H) + f III
j (T))

(
−I{H} + 1

4

)
− 1

2 ( f III
j (H) +

12
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3 f III
j (T))

(
−I{T} + 1

4

)
= f III

j (H)I{H} + f III
j (T)I{T} = f III

j

if f III
j 6= 0, and ∑

n
k=1 λ

f1:n
k fk = gH

i + gT
i =

−I{H} + 1
2 − I{T} + 1

2 = 0 = f III
j if f III

j = 0, so indeed

f III
j ∈

{
∑

n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

.

To show that f I
j ∈
{

∑
n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

for
every j in {1, . . . ,nI}, consider any f1:n in×n

k=1 Ak
such that f1:n satisfies the conditions of Situation (d)
for i := j + nI, which is then an element of {nI +

1, . . . ,2nI}. Then ∑
n
k=1 λ

f1:n
k fk = g j = f I

j , so indeed f I
j ∈{

∑
n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

.
We finally show, conversely, that A ⊇{

∑
n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

. Consider any f in{
∑

n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

. Then f = ∑
n
k=1 λ

f1:n
k fk

for some f1:n in×n
k=1 Ak. If this f1:n satisfies the conditions

of Situation (a) for some i in {2nI +1, . . . ,2nI +nII}, then
∑

n
k=1 λ

f1:n
k fk = f II

j for j := i−2nI, as shown above, so f ∈A.
If f1:n satisfies the conditions of Situation (b) for some i
in {2nI + nII + 2nIII + 1, . . . ,n}, then ∑

n
k=1 λ

f1:n
k fk = f IV

j
for j := i−2nI−nII−2nIII, as shown above, so f ∈ A. If
f1:n satisfies the conditions of Situation (c) for some i in
{2nI+nII+1, . . . ,2nI+nII+nIII}, then ∑

n
k=1 λ

f1:n
k fk = f III

j
for j := i− 2nI − nII, as shown above, so f ∈ A. If f1:n
satisfies the conditions of Situation (d) for some i in
{nI + 1, . . . ,2nI}, then ∑

n
k=1 λ

f1:n
k fk = f I

j for j := i− nI,
as shown above, so f ∈ A. The only other possibility is
that f1:n satisfies the conditions of Situation (e1) or (e2),
depending on whether or not A∩L>0 6= /0. If A∩L>0 6= /0
(so Situation (e1)), then ∑

n
k=1 λ

f1:n
k fk = f I

1, which is an
element of A since nI ≥ 1, so f ∈ A. If A ∩L>0 = /0
(so Situation (e2)), then ∑

n
k=1 λ

f1:n
k fk = ( f II

1 (T) −
f II
1 (H))

(
−I{H} +

f II
1 (T)

f II
1 (T)− f II

i (H)

)
= f II

1 or ∑
n
k=1 λ

f1:n
k fk =

( f IV
1 (H)− f IV

1 (T))
(
−I{H} +

f IV
1 (H)

f IV
1 (H)− f IV

i (T)

)
= f IV

1 , which
both belong to A since nII ≥ 1 and nIV ≥ 1, so f ∈ A.
There are no other possibilities, so we conclude that indeed
A ⊇

{
∑

n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak
}

.

Proof [Proof of Proposition 10] By definition, the least
informative coherent set of desirable gamble sets that in-
cludes {{ f} : f ∈ D} is the natural extension clK(AD) of
the assessment AD := {{ f} : f ∈ D}.

Let us first show that AD is consistent. By Theorem 6, we
need to show that /0 /∈ AD and {0} /∈ Posi(L s

>0 ∪AD) =
Posi(AD), where the equality follows from the fact that
L s

>0 ⊆ AD by Axiom D2. By definition, /0 /∈ AD , so it
remains to prove that {0} /∈ Posi(AD). To this end, consider
any singleton {g} in Posi(AD). There are n in N, A1, . . . ,
An in AD , and, for all f1:n in×n

k=1 Ak, coefficients λ
f1:n

1:n > 0,

such that
{

∑
n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak

}
= {g}. Since the

entries of any sequence f1:n in×n
k=1 Ak belong to L>0∪D,

so does ∑
n
k=1 λ

f1:n
k fk, by repeated application of Axiom D3.

So g ∈ D ∪L>0. By Axiom D1, 0 /∈ D, whence indeed
g 6= 0.

We now know that AD is consistent, so by Theorem 6,
its natural extension AD is equal to Rs(Posi(AD)), since
we already know that L s

>0 ⊆AD . Let us show that KD =
Rs(Posi(AD)); we prove (i) KD ⊆ Rs(Posi(AD)) and (ii)
KD ⊇ Rs(Posi(AD)). For (i), consider any A in KD , so
A ∩D 6= /0, and therefore f ∈ A for some f in D. This
tells us that { f} ∈AD . Since K ⊆ Posi(K) for any K in K,
we find that { f} ∈ Posi(AD). Therefore, any superset of
{ f}—and in particular indeed the set A—will belong to
Rs(Posi(AD)).

Let us now show that (ii) KD ⊇ Rs(Posi(AD)). To this
end, consider any A in Rs(Posi(AD)). Then, by the defini-
tion of the Rs operator, there is some B in Posi(AD) such
that B \L≤0 ⊆ A. This means that there are n in N, A1, . . . ,
An in L s

>0∪AD , and, for all f1:n in×n
k=1 Ak, coefficients

λ
f1:n

1:n > 0, such that
{

∑
n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Ak

}
= B.

Since the entries of any sequence f1:n in×n
k=1 Ak belong to

L>0∪D, so does ∑
n
k=1 λ

f1:n
k fk, by repeated application of

Axiom D3. So we find B ⊆D∪L>0 = D, where the equal-
ity is a consequence of Axiom D2, and hence B \L≤0 ⊆D.
So A∩D 6= /0, and therefore indeed A ∈KD .

We finish the proof by showing that KD is indeed compat-
ible with D, or, in other words, that DKD = D. Indeed, infer
that DKD = { f ∈ L : { f} ∈ KD} = { f ∈ L : { f}∩D 6=
/0}= D.

Proof [Proof of Proposition 14] For Axiom K0, consider
any A in KcE. Then IEA ∈ K, whence IEA 6= /0 since K
satisfies Axiom K0. Therefore indeed A 6= /0.

For Axiom K1, consider any A in KcE. Then IEA ∈ K,
whence IEA \{0} ∈ K since K satisfies Axiom K1. Since
IE f 6= 0⇔ f 6= 0 for any gamble f on E, we find that
IE(A \{0}) ∈ K, whence indeed A \{0} ∈ KcE.

For Axiom K2, consider any f in L (E)>0. Then IE f ∈
L (X )>0, whence by Axiom K2 {IE f} ∈ K. Therefore
indeed { f} ∈ KcE.

For Axiom K3, consider any A1 and A2 in KcE, and, for
any f in A1 and g in A2, any (λ f ,g ,µ f ,g)> 0. Then IEA1 ∈K
and IEA2 ∈ K, whence by Axiom K3 {λ f ,g f +µ f ,gg : f ∈
IEA1,g ∈ IEA2}= {λ f ,gIE f +µ f ,gIEg : f ∈ A1,g ∈ A2}=
IE{λ f ,g f+µ f ,gg : f ∈A1,g ∈A2}∈K, where we identified
(λIE f ,IE g ,µIE f ,IE g) with (λ f ,g ,µ f ,g), for any f in A1 and g
in A2. Therefore indeed {λ f ,g f +µ f ,gg : f ∈ A1,g ∈ A2} ∈
KcE.

For Axiom K4, consider any A1 in KcE and any A2 in
Q such that A1 ⊆ A2. Then IEA1 ∈ K and IEA1 ⊆ IEA2,
whence by Axiom K4 IEA2 ∈ K. Therefore indeed A2 ∈
RcE.

Proof [Proof of Proposition 15] For the first statement,
consider any f in L (E), and infer the following chain of

13
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equivalences:

f ∈ DKcE⇔ IE f ∈ DK ⇔{IE f} ∈ K

⇔{ f} ∈ KcE⇔ f ∈ DKcE ,

where the first equivalence follows from Definition 12, the
second one and the last one are due to Equation (3), and
the third one follows from Definition 13.

For the second statement, consider any A in Q(L (E))
and the following chain of equivalences:

A ∈ KDcE⇔ IEA ∈ KD ⇔ IEA∩D 6= /0
⇔ (∃ f ∈ A)IE f ∈ D

⇔ A∩DcE 6= /0⇔ A ∈ KDcE ,

where the first equivalence follows from Definition 13, the
second one and the last one are due to Proposition 10, and
the fourth one follows from Definition 12.

We now turn to the last statement. By Theorem 11 we
have that K =

⋂
{KD : D ∈ D(K)}, implying that A ∈ K⇔

(∀D ∈ D(K))A ∈ KD , for any A in Q(L (X )). Therefore
in particular, for any A in Q(L (E)),

A ∈ KcE⇔ IEA ∈ K⇔ (∀D ∈ D(K))IEA ∈ KD

⇔ (∀D ∈ D(K))A ∈ KDcE
⇔ (∀D ∈ D(K))A ∈ KDcE

⇔ A ∈
⋂
{KDcE : D ∈ D(K)},

where the first and third equivalences follow from Def-
inition 13, and the fourth one follows from the already
established second statement of this proposition. Therefore
indeed KcE =

⋂
{KDcE : D ∈ D(K)}.

Proof [Proof of Proposition 19] The result follows immedi-
ately, once we realise that A1 6= /0⇔ A∗1 6= /0, f > 0⇔ f ∗ >
0, λ f +µg ∈ A1⇔ λ f ∗+µg∗ ∈ A∗1, and A1 ⊆ A2⇔ A∗1 ⊆
A∗2, for all f in L (XO) whose cylindrical extension is f ∗,
all A1 and A2 in Q(L (XO)) whose cylindrical extensions
are A∗1 and A∗2, and all λ in µ in R such that (λ ,µ)> 0.

Proof [Proof of Proposition 20] For the first statement,
observe that indeed

margODK = { f ∈L (XO) : f ∈ DK}
= { f ∈L (XO) : { f} ∈ K}
= { f ∈L (XO) : { f} ∈margOK}= DmargO K,

where the second and last equalities follow from Equa-
tion (3), and the third one follows from Definition 18.

For the second statement, observe that

margOKD

= {A ∈Q(L (XO)) : A ∈ KD}
= {A ∈Q(L (XO)) : A∩D 6= /0}

= {A ∈Q(L (XO)) : A∩margOD 6= /0}
= {A ∈Q(L (XO)) : A ∈ KmargO D}= KmargO D ,

where the first equality follows from Definition 18 and
the second and penultimate equalities follow from Proposi-
tion 10.

We now turn to the last statement. By Theorem 11 we
have that K =

⋂
{KD : D ∈ D(K)}, implying that A ∈ K⇔

(∀D ∈D(K))A ∈KD , for any A in Q(L (X1:n)). Therefore
in particular, for any A in Q(L (XO)),

A ∈margOK⇔ A ∈ K⇔ (∀D ∈ D(K))A ∈ KD

⇔ (∀D ∈ D(K))A ∈margOKD

⇔ (∀D ∈ D(K))A ∈ KmargO D

⇔ A ∈
⋂
{KmargO D : D ∈ D(K)},

where the first and third equivalences follow from Def-
inition 18, and the fourth one follows from the already
established second statement of this proposition. Therefore
indeed margOK =

⋂
{KmargO D : D ∈ D(K)}.

Proof [Proof of Proposition 21] We will first show
that any coherent set of desirable gamble sets K′ on
L (X1:n) that marginalises to KO must be at least as
informative as ext1:n(KO). To establish this, since K′

marginalises to KO , note that A ∈ KO ⇔ A ∈ K′, for all
A in Q(L (XO)). Therefore, in particular, A ∈ KO ⇒ A ∈
K′ for all A in Q(L (XO)), so KO ⊆ K′. This implies
that indeed ext1:n(KO) = Rs(Posi(L s(X1:n)>0 ∪KO)) ⊆
Rs(Posi(L s(X1:n)>0∪K′)) = K′, where the final equality
holds because K′ is coherent.

So we already know that any coherent set of desirable
gamble sets that marginalises to KO must be at least as
informative as ext1:n(KO). It therefore suffices to prove that
ext1:n(KO) is coherent and that it marginalises to KO . To
show that ext1:n(KO) = Rs(Posi(L s(X1:n)>0 ∪A 1:n

KO
)) is

coherent, by Theorem 6 it suffices to show that KO is a
consistent assessment—that is, to show that /0 /∈A 1:n

KO
and

{0} /∈ Posi(L s(X1:n)>0 ∪A 1:n
KO

). That this is indeed the
case follows from the coherence of KO = A 1:n

KO
.

The proof is therefore complete if we can show that
margO(ext1:n(KO)) = KO . Since for any A in KO it is
obvious that both A ∈ ext1:n(KO) and A ∈ Q(L (XO)),
we see immediately that KO ⊆ margO(ext1:n(KO)), so
we concentrate on proving the converse inclusion. Con-
sider any A in margO(ext1:n(KO)), meaning that both
A ∈Q(L (XO)) and A ∈ ext1:n(KO). That A ∈ ext1:n(KO)
implies that B \L≤0 ⊆ A for some B in Posi(L s

>0∪KO).
Then there are m in N, A1, . . . , Am in L s

>0 ∪KO , and co-
efficients λ

f1:m
1:m > 0 for all f1:m in×m

k=1 Ak such that B ={
∑

m
k=1 λ

f1:m
k fk : f1:m ∈×m

k=1 Ak

}
. Without loss of general-

ity, assume that A1, . . . ,A` ∈ KO and A`+1, . . . ,Am ∈L s
>0

for some ` in {0, . . . ,m}. Consider the special subset P :=

14
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{
f1:m ∈×m

k=1 Ak : λ
f1:m

1:` = 0
}

of×m
k=1 Ak. If P 6= /0, then for

every element g1:m of P we have that ∑
m
k=1 λ

g1:m
k gk > 0, so

B∩L>0 6= /0. Since B \L≤0 ⊆ A, also A∩L>0(XO) 6= /0,
whence A ∈ KO by coherence [more specifically, by Ax-
ioms K2 and K4]. Therefore, assume that P = /0, and define
the coefficients

µ
f1:m

k :=

{
λ

f1:m
k if k ≤ `

0 if k ≥ `+1

for all f1:m in×m
k=1 Ak and k in {1, . . . ,m}. Because P = /0,

for every f1:m in×m
k=1 Ak we have that µ

f1:m
1:` = λ

f1:m
1:` > 0.

Also, for every f1:m in×m
k=1 Ak and k ≥ `+ 1, the co-

efficient µ
f1:m

k equals 0, so we identify µ
f1:`

1:` with µ
f1:m

1:` .

Then every element of
{

∑
m
k=1 µ

f1:m
k fk : f1:m ∈×m

k=1 Ak

}
={

∑
`
k=1 µ

f1:`
k fk : f1:` ∈×m

k=`+1 Ak

}
∈ Posi(KO) = KO is

dominated by an element of B. Therefore, by Lemma 27
below B ∈ KO , whence by coherence, indeed also A ∈ KO .

Lemma 27 Consider any coherent set of desirable gamble
sets K and any gamble sets A and B in Q. If A ∈ K and
(∀ f ∈ A)(∃g ∈ B) f ≤ g, then B ∈ K.

Proof Let A := { f1, . . . , fm} for some m in N, and denote
the finite possibility space X = {x1, . . . ,x`} for some `
in N. Since (∀ f ∈ A)(∃g ∈ B) f ≤ g, we have that B is a
superset of

B′ :=
{

f1 +
`

∑
k=1

µk,1I{xk}, . . . , fm +
`

∑
k=1

µk,mI{xk}

}
=
{

f j +
`

∑
k=1

µk, jI{xk} : j ∈ {1, . . . ,m}
}

for some µk, j ≥ 0 for all k in {1, . . . , `} and j in {1, . . . ,m}.
Use the definition of the Posi operator, with A1 :=
{I{x1}} ∈ K, . . . , A` := {I{x`}} ∈ K, A`+1 := A ∈ K, and

for all f j
1:`+1 := (I{x1},I{x2}, . . . ,I{x`}, f j) ∈×`+1

k=1 Ak, let

λ
f j
1:`+1

1:`+1 := (µ1, j,µ2, j, . . . ,µ`, j,1)> 0, to infer that

{`+1

∑
k=1

λ
f j
1:`+1

k f j
k : f j

1:`+1 ∈
`+1×
k=1

Ak

}

=
{

f j +
`

∑
k=1

µk, jI{xk} : j ∈ {1, . . . ,m}
}
= B′

belongs to Posi(K). Because B ⊇ B′, we have that B ∈
Rs(Posi(K)). But since K = Rs(Posi(K)) by coherence,
we infer that indeed B ∈ K.

Proof [Proof of Proposition 22] By Theorem 11 we have
that KO =

⋂
{KDO : DO ∈ D(KO)}, implying that A ∈

KO ⇔ (∀DO ∈D(KO))A ∈KDO , for any A in Q(L (XO)).
Therefore, for any A in Q(L (XO)),

A ∈ ext1:n(KO)⇔ A ∈ KO

⇔ (∀DO ∈ D(KO))A ∈ KD

⇔ (∀DO ∈ D(KO))A∩DO 6= /0

⇔ (∀DO ∈ D(KO))A∩ extD1:n(DO) 6= /0

⇔ A ∈
⋂
{KextD1:n(DO ) : D ∈ D(KO)},

where the first equivalence holds because ext1:n(KO)
marginalises to KO , the third one because of Proposition 10,
and the fourth one because extD1:n(DO) marginalises to DO .
So indeed ext1:n(KO) =

⋂
{KextD1:n(DO ) : DO ∈ D(KO)}.

Proof [Proof of Proposition 23] Consider the following
chain of equalities:

margO(KncEI)

= {A ∈Q(L (XO)) : A ∈ KncEI}
= {A ∈Q(L (XO)) : IEI A ∈ Kn}
= {A ∈Q(L (XO)) : IEI A ∈margI∪OKn}
= {A ∈Q(L (XO)) : A ∈ (margI∪OKn)cEI}
= margO((margI∪OKn)cEI),

where the third equality holds because IEI A is a set of
gambles on XI∪O .

Proof [Proof of Proposition 25] To show that (i) implies (ii),
consider any A in Q(L (XO)) and EI in P /0(XI), and
recall the following equivalences:

A ∈ Kn⇔ A ∈margO(KncEI) by Definition 18 and (i)

⇔ A ∈ KncEI by Definition 18
⇔ IEI A ∈ Kn by Definition 13.

To show that (ii) implies (i), consider any EI in P /0(XI),
and recall the following equalities:

margO(KncEI) = {A ∈Q(L (XO)) : A ∈ KncEI}
= {A ∈Q(L (XO)) : IEI A ∈ Kn}
= {A ∈Q(L (XO)) : A ∈ Kn}
= margOKn,

where the first and last equalities follow from Definition 18,
the second one from Definition 13, and the third one
from (ii).

Proof [Proof of Theorem 26] We will first show that any
coherent set of desirable gamble sets K′ on L (X1:n)
that marginalises to KO and that satisfies epistemic
irrelevance of XI to XO must be at least as informative
as extirr1:n(KO). To this end, consider any B in A irr

I→O .

15
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Then B = IEI A for some EI in P /0(XI) and A in KO .
Since K′ marginalises to KO , infer that A ∈ K′. Fur-
thermore, since K′ satisfies epistemic irrelevance of
XI to XO , by Proposition 25 also B = IEI A ∈ K′. We
conclude that B ∈A irr

I→O ⇒ B ∈ K′⇔ B ∈margI∪OK′, for
every B in Q(L (XI∪O)), so A irr

I→O ⊆ margI∪OK′.
This implies that Rs(Posi(L s(XI∪O)>0 ∪
A irr

I→O)) ⊆ Rs(Posi(margI∪OK′)) = margI∪OK′,
where the equality follows from the fact that
margI∪OK′ is coherent by Proposition 19. Then
extirr1:n(KO) = ext1:n(Rs(Posi(L s(XI∪O)>0 ∪A irr

I→O))) ⊆
ext1:n(margI∪OK′) and since by Proposition 21
ext1:n(margI∪OK′) is the least informative coher-
ent set of desirable gamble sets on L (X1:n)
that marginalises to margI∪OK′, we have that
ext1:n(Rs(Posi(margI∪OK′))) ⊆ K′. Therefore indeed
extirr1:n(KO)⊆ K′.

The proof of the first statement is therefore complete
if we could show that extirr1:n(KO) (i) is coherent, (ii)
marginalises to KO , and (iii) satisfies epistemic irrelevance
of XI to XO .

For (i), it suffices to show that /0 /∈ A irr
I→O and {0} /∈

Kirr
I∪O = Rs(Posi(L s(XI∪O)>0∪A irr

I→O)):
6 indeed, if this

is the case, then by Theorem 6 Kirr
I∪O is a coherent set of

desirable gamble sets on L (XI∪O), and then by Proposi-
tion 21 extirr1:n(KO) is a coherent set of desirable gamble sets
on L (X1:n). So we will show that /0 /∈ A irr

I→O and {0} /∈
Kirr

I∪O . That /0 /∈A irr
I→O is clear from Equation (6) because

KO is coherent. So we focus on proving that {0} /∈ Kirr
I∪O .

Assume ex absurdo that {0} ∈ Kirr
I∪O . By Lemma 28 below

we would then infer that
{

∑xI∈XI h(xI,·) : h ∈ {0}
}
=

{0} ∈ KO , contradicting the coherence of KO . Therefore
indeed {0} /∈ Kirr

I∪O .
For (ii), we need to show that A ∈ extirr1:n(KO)⇔ A ∈ KO

for any A in Q(L (XO)). For necessity, consider any
A in Q(L (XO)) and assume that A ∈ extirr1:n(KO). By
Lemma 28 then

{
∑xI∈XI h(xI,·) : h ∈ A

}
∈ KO . Since A

is a set of gambles on XO , we infer
{

∑xI∈XI h(xI,·) : h ∈
A
}
=
{

∑xI∈XI h : h ∈ A
}
=
{
|XI|h : h ∈ A

}
= |XI|A,

whence by coherence, indeed A ∈ KO . For sufficiency, con-
sider any A in Q(L (XO)) and assume that A ∈ KO . Then
A = IXI A and XI ∈P /0(XI), so A ∈ A irr

I→O . Therefore
indeed A ∈ extirr1:n(KO).

For (iii), by Proposition 25 it suffices to show that A ∈
extirr1:n(KO)⇔ IEI A ∈ extirr1:n(KO), for all A in Q(L (XO))
and EI in P /0(XI). For necessity, consider any A
in Q(L (XO)) and any EI in P /0(XI), and assume
that A ∈ extirr1:n(KO). Since we just have shown that
margOextirr1:n(KO) = KO , this implies that A ∈ KO , whence
indeed IEI A ∈ A irr

I→O ⊆ extirr1:n(KO). For sufficiency, con-

6. These two conditions are equivalent to /0 /∈ A irr
I→O and {0} /∈

Posi(L s(XI∪O )>0 ∪A irr
I→O ).

sider any A in Q(L (XO)) and any EI in P /0(XI),
and assume that IEI A ∈ extirr1:n(KO). Since by Proposi-
tion 21 extirr1:n(KO) marginalises to Kirr

I∪O , this implies
that IEI A ∈ Kirr

I∪O . Use Lemma 28 to infer that then{
∑xI∈XI h(xI,·) : h ∈ IEI A

}
=
{

∑xI∈XI IEI h(xI,·) : h ∈
A
}
=
{
|EI|h : h ∈ A

}
= |EI|A ∈ KO , whence by coherence

indeed A ∈ KO .
The second statement is a direct application of Proposi-

tion 22.

Lemma 28 Consider any disjoint and non-empty subsets
I and O of {1, . . . ,n}, and any coherent set of desirable
gamble sets KO on L (XO). Then

A ∈ Rs(Posi(L s(XI∪O)>0∪A irr
I→O))

⇒
{

∑
xI∈XI

h(xI,·) : h ∈ A
}
∈ KO ,

for all A in Q(L (XI∪O)).

Proof Consider any A in Q(L (XI∪O)) and assume that
A ∈ Rs(Posi(L s(XI∪O)>0∪A irr

I→O)). Then B \L≤0 ⊆ A
for some B in Posi(L s(XI∪O)>0∪A irr

I→O), implying that
B =

{
∑

m
k=1 λ

f1:m
k fk : f1:m ∈×m

k=1 Ak
}

for some m in N,
A1, . . . , Am in L s(XI∪O)>0 ∪A irr

I→O , and coefficients
λ

f1:m
1:m > 0 for all f1:m in×m

k=1 Ak. Without loss of gener-
ality, assume that A1, . . . ,A` ∈ A irr

I→O and A`+1, . . . ,Am ∈
L s(XI∪O)>0 for some ` in {0, . . . ,m}. Consider the spe-
cial subset P :=

{
f1:m ∈×m

k=1 Ak : λ
f1:m

1:` = 0
}

of×m
k=1 Ak.

If P 6= /0, then for every element g1:m of P we have that
∑

m
k=1 λ

g1:m
k gk > 0, so B ∩L (XI∪O)>0 6= /0, and therefore

also A∩L (XI∪O)>0 6= /0, whence
{

∑xI∈XI h(xI,·) : h ∈
A
}
∈ KO by the coherence of KO [more specifically, by

Axioms K2 and K4]. So assume that P = /0, and define the
coefficients

µ
f1:m

k :=

{
λ

f1:m
k if k ≤ `

0 if k ≥ `+1

for all f1:m in×m
k=1 Ak and k in {1, . . . ,m}. Because P = /0,

for every f1:m in×m
k=1 Ak we have that µ

f1:m
1:` = λ

f1:m
1:` > 0.

Also, for every f1:m in×m
k=1 Ak and k ≥ `+ 1, the coeffi-

cient µ
f1:m

k equals 0, so we identify µ
f1:m

1:` with µ
f1:`

1:` . Then
every element of B′ :=

{
∑

m
k=1 µ

f1:m
k fk : f1:m ∈×m

k=1 Ak
}
={

∑
`
k=1 µ

f1:`
k fk : f1:` ∈×`

k=1 Ak
}

is dominated by an ele-
ment of B. For every k in {1, . . . , `} the gamble set Ak
belongs to A irr

I→O , so we may write Ak = IEk AO,k with
Ek ∈ P /0(XI) and AO,k ∈ KO . Therefore |Ak| = |AO,k|,
and every fk in Ak can be uniquely written as fk = IEk gk

with gk in AO,k. So for every f1:` in×`
k=1 Ak there is a

unique g1:` in×`
k=1 AO,k such that fk = IEk gk for every k in
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{1, . . . , `}. For every f1:` in×`
k=1 Ak and its corresponding

unique g1:` in×`
k=1 AO,k, we define µ

g1:`
1:` := µ

f1:`
1:` . There-

fore B′ =
{

∑
`
k=1 µ

g1:`
k IEk gk : g1:` ∈×`

k=1 AO,k
}

, and hence{
∑

xI∈XI

h(xI,·) : h ∈ B′
}

=

{
∑

xI∈XI

`

∑
k=1

µ
g1:`
k IEk gk(xI,·) : g1:` ∈

`×
k=1

AO,k

}

=

{ `

∑
k=1

µ
g1:`
k |Ek|gk(xI,·) : g1:` ∈

`×
k=1

AO,k

}
belongs to Posi(KO) = KO . Since every element of B′ is
dominated by an element of B, we have that every el-
ement of

{
∑xI∈XI h(xI,·) : h ∈ B′

}
is dominated by an

element of
{

∑xI∈XI h(xI,·) : h ∈ B
}

, so by Lemma 27{
∑xI∈XI h(xI,·) : h ∈ B

}
∈ KO . By K4 we have that also

indeed
{

∑xI∈XI h(xI,·) : h ∈ A
}
∈ KO .

17


	1 Introduction
	2 Sets of desirable gamble sets & sets of desirable gambles
	2.1 Sets of desirable gamble sets
	2.2 Sets of desirable gambles
	2.3 Connection between sets of desirable gamble sets and sets of desirable gambles

	3 Conditioning
	4 Multivariate sets of desirable gamble sets
	4.1 Basic notation & cylindrical extension
	4.2 Marginalisation and weak extension
	4.3 Conditioning on variables
	4.4 Irrelevant natural extension

	5 Conclusions
	A Proofs

