Exchangeable choice functions

Arthur Van Camp & Gert de Cooman

IDLab, Ghent University, Belgium

$$X \coloneqq (X_1, X_2, \ldots, X_n)$$

 X_i belongs to finite \mathscr{X} .

$$X := (X_1, X_2, \ldots, X_n)$$

 X_i belongs to finite \mathscr{X} .

Permutation $\pi \in \mathscr{P}_n$ of $\{1, \ldots, n\}$:

$$x = (x_1, x_2, \dots, x_n)$$
 $\pi x := (x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$

 $\mathscr{L}(\mathscr{X}^n)$: collection of gambles on \mathscr{X}^n .

Lift permutation π to $\mathscr{L}(\mathscr{X}^n)$:

$$\pi^t f := f \circ \pi$$
, so $(\pi^t f)(x) = f(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$

for all *f* on \mathscr{X}^n , π in \mathscr{P}_n and *x* in \mathscr{X}^n .

 $\mathscr{L}(\mathscr{X}^n)$: collection of gambles on \mathscr{X}^n .

Lift permutation π to $\mathscr{L}(\mathscr{X}^n)$:

$$\pi^t f := f \circ \pi$$
, so $(\pi^t f)(x) = f(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$

for all *f* on \mathscr{X}^n , π in \mathscr{P}_n and *x* in \mathscr{X}^n .

Exchangeability means: *f* and $\pi^t f$ are considered indifferent.

Exchangeability: a special indifference assessment

Exchangeability means: *f* and $\pi^t f$ are considered indifferent.

Indifferent gambles $I_{\mathscr{P}_n} := \operatorname{span} \{ f - \pi^t f : f \in \mathscr{L}(\mathscr{X}^n), \pi \in \mathscr{P}_n \}.$

How can we work with indifference?

Choice functions

- Domain: the set of non-empty but finite sets of gambles $\mathscr{Q}(\mathscr{L})$.
- A choice function C on \mathcal{L} is a map

 $\mathscr{Q}(\mathscr{L}) \to \mathscr{Q}(\mathscr{L}) \cup \{\emptyset\} \colon A \mapsto C(A) \text{ such that } C(A) \subseteq A$

Choice functions

- Domain: the set of non-empty but finite sets of gambles $\mathscr{Q}(\mathscr{L})$.
- A choice function C on \mathcal{L} is a map

 $\mathscr{Q}(\mathscr{L}) \to \mathscr{Q}(\mathscr{L}) \cup \{\emptyset\} \colon A \mapsto C(A) \text{ such that } C(A) \subseteq A$

Choice functions can be defined on any ordered linear space.

Indifference and choice functions

$$I_{\mathscr{P}_n} := \operatorname{span} \{ f - \pi^t f : f \in \mathscr{L}(\mathscr{X}^n), \pi \in \mathscr{P}_n \}$$

How can we model indifference?

Indifference and choice functions

$$I_{\mathscr{P}_n} := \operatorname{span} \{ f - \pi^t f : f \in \mathscr{L}(\mathscr{X}^n), \pi \in \mathscr{P}_n \}$$

How can we model indifference?

For any gamble f on \mathscr{X}^n , we define its equivalence class

$$[f] := \{ g \in \mathscr{L}(\mathscr{X}^n) : f - g \in I_{\mathscr{P}_n} \},\$$

which is an element of the quotient space

$$\mathscr{L}(\mathscr{X}^n)/I_{\mathscr{P}_n} \coloneqq \{[f] : f \in \mathscr{L}(\mathscr{X}^n)\}.$$

Indifference and choice functions

$$I_{\mathscr{P}_n} := \operatorname{span} \{ f - \pi^t f : f \in \mathscr{L}(\mathscr{X}^n), \pi \in \mathscr{P}_n \}$$

How can we model indifference?

For any gamble f on \mathscr{X}^n , we define its equivalence class

$$[f] := \{g \in \mathscr{L}(\mathscr{X}^n) : f - g \in I_{\mathscr{P}_n}\},\$$

which is an element of the quotient space

$$\mathscr{L}(\mathscr{X}^n)/I_{\mathscr{P}_n} \coloneqq \{[f] : f \in \mathscr{L}(\mathscr{X}^n)\}.$$

C is compatible with $I_{\mathscr{P}_n}$ if there is some representing *C'* on $\mathscr{L}(\mathscr{X}^n)/I_{\mathscr{P}_n}$ such that

 $C(A) = \{ f \in A : [f] \in C'(A/I_{\mathscr{P}_n}) \} \text{ for all } A \text{ in } \mathscr{Q}(\mathscr{L}(\mathscr{X}^n)).$

Exchangeability

$$I_{\mathscr{P}_n} := \operatorname{span} \{ f - \pi^t f : f \in \mathscr{L}(\mathscr{X}^n), \pi \in \mathscr{P}_n \}$$

Representation: there is some representing C' on $\mathscr{L}(\mathscr{X}^n)/I_{\mathscr{P}_n}$ such that

 $C(A) = \{f \in A : [f] \in C'(A/I_{\mathscr{P}_n})\}$

Exchangeability

$$I_{\mathscr{P}_n} := \operatorname{span} \{ f - \pi^t f : f \in \mathscr{L}(\mathscr{X}^n), \pi \in \mathscr{P}_n \}$$

Representation: there is some representing C' on $\mathscr{L}(\mathscr{X}^n)/I_{\mathscr{P}_n}$ such that

$$C(A) = \{f \in A : [f] \in C'(A/I_{\mathscr{P}_n})\}$$

Is there a more elegant representation?

 $\begin{array}{rcccc} X = (X_1, X_2, \dots, X_n) & \to & \pi X = (X_{\pi(1)}, X_{\pi(2)}, \dots, X_{\pi(n)}) \\ (a, a, b, a, b, a) & \to & (b, a, a, a, a, b) & \to & (a, b, b, a, a, a) & \to & \dots \end{array}$

Let $T(x)_z = |\{k \in \{1, ..., n\} : x_k = z\}|$ for $z \in \mathscr{X}$ be the counts.

Counts

T(x) belongs to $\mathscr{N}^n := \{m \in \mathbb{Z}_{>0}^{\mathscr{X}} : \sum_{z \in \mathscr{X}} m_z = n\}.$

Counts

T(x) belongs to $\mathscr{N}^n := \{m \in \mathbb{Z}_{\geq 0}^{\mathscr{X}} : \sum_{z \in \mathscr{X}} m_z = n\}.$

 $H_n \colon \mathscr{L}(\mathscr{X}^n) \to \mathscr{L}(\mathscr{N}^n) \colon f \mapsto H_n(f) \coloneqq H_n(f| \bullet)$ where $H_n(f|m) \coloneqq \frac{1}{\binom{n}{m}} \sum_{y \in [m]} f(y)$ for all f in $\mathscr{L}(\mathscr{X}^n)$ and m in \mathscr{N}^n .

 $H_n(\cdot | m)$ characterises a hyper-geometric distribution: sampling from an urn with composition *m*.

Counts

T(x) belongs to $\mathscr{N}^n := \{m \in \mathbb{Z}^{\mathscr{X}}_{\geq 0} : \sum_{z \in \mathscr{X}} m_z = n\}.$

 $H_n \colon \mathscr{L}(\mathscr{X}^n) \to \mathscr{L}(\mathscr{N}^n) \colon f \mapsto H_n(f) \coloneqq H_n(f) \bullet)$ where $H_n(f|m) \coloneqq \frac{1}{\binom{n}{m}} \sum_{y \in [m]} f(y)$ for all f in $\mathscr{L}(\mathscr{X}^n)$ and m in \mathscr{N}^n .

 $H_n(\cdot | m)$ characterises a hyper-geometric distribution: sampling from an urn with composition *m*.

 H_n is constant on [*f*].

 H_n is a linear order isomorphism between $\mathscr{L}(\mathscr{X}^n)/I_{\mathscr{P}_n}$ and $\mathscr{L}(\mathscr{N}^n)$.

Finite representation

A choice function *C* on $\mathscr{L}(\mathscr{X}^n)$ is exchangeable if and only if there is a unique representing choice function \tilde{C} on $\mathscr{L}(\mathscr{N}^n)$ such that

 $C(A) = \{f \in A : \operatorname{H}_n(f) \in \widetilde{C}(\operatorname{H}_n(A))\}$

for all A in $\mathscr{Q}(\mathscr{L}(\mathscr{X}^n))$.

Exchangeable choice functions 🗎

Arthur Van Camp and Gert de Cooman

IDLab, Ghent University, Belgium

FACULTY OF ENGINEERING GHENT LINIVERSITY AND ARCHITECTURE

space T, ordered by a reflexive vector ordering -, whose ineffesive part -Choice functions A choice function C on F is a map

Rationality axioms We call a choice function C on $\mathcal{J}(\mathcal{F})$ coherent if for all A. Ai and Ai in \$7(F), all y and y in F, and all A in R-4; C_0 , if $u \prec v$ then $\{v\} = C[\{u,v\}];$ G₁, a, if C(A₁) ⊂ A₁ \ A₁ and A₁ ⊂ A₁ ⊂ A then C(A) ⊂ A \ A₂ Ben's of To define coherent choice functions, we only need an

ordered linear space

Which uncertainty models do we use? How do choice functions work?

See [Gert de Cooman & Erik Quaeghebeur; Exchange-Count vectors Since the subject is indifferent between $x = (x_1, \dots, x_n)$ and $(x_{n(1)}, \dots, x_{n(n)})$, a useful statistic of $x = (x_1, \dots, x_n)$ and $(x_{n(1)}, \dots, x_{n(n)})$, a useful statistic of
$$\begin{split} \|\{k\in\{1,\ldots,n\}:x_k=z\}| \mbox{ for all }z\ \mbox{ in }\mathcal{X}, \mbox{ and whose range}\\ \|\{k\in\{1,\ldots,n\}:x_k=z\}| \mbox{ for all }y\ \mbox{ in }\mathcal{X}, \mbox{ and whose range}\\ \|k\cdot \mathcal{X}^{*}=\{k\in\mathbb{Z}_{\leq 1}^{d}:z_{k}^{*}, z_{k}^{*}, z$$

on $\mathscr{X}(\mathscr{X}^{*})/I_{\mathscr{P}}$. Consider the special map

where $H_n(f)$ is $) := \frac{1}{2\pi} \sum_{x \in [n]} f(y)$ for all f in $\mathcal{X}(\mathcal{X}^n)$ and # in .+". He is the expectation operator associated with the uniform distribution on [w]. Proposition. Consider any [f] and [g] in $\mathcal{X}(\mathcal{X}^{*})/I_{\mathcal{P}_{2}}$.

Then $[f] \preceq [g] \Leftrightarrow H_{r}(f) \preceq H_{r}(g)$. Essentially, H. is a linear order isomorphism

between $\mathcal{L}(\mathcal{K}^*)/I_{\geq 0}$ and $\mathcal{L}(\mathcal{K}^*)$.

Theorem 2 (Finite representation), A choice function C on $\mathcal{X}(\mathcal{X}^{*})$ is exchangeable if and only if there is a unique

for all A in $\mathcal{D}(\mathcal{X}(\mathcal{X}^*))$. Furthermore, in that case, \hat{C} is

Is there a represen-Is there a de Finetti-like

able case?

Can we add

assessments?

Polynomial gambles Consider the \mathcal{X} -simplex $\Sigma_{\mathcal{X}} :=$ $\{\theta \in \mathbb{R}_{\geq 0}^X : \sum_{v \in X} \theta_v = 1\}$, and the linear space $\mathcal{F}^u(\Sigma_X)$ of polynomial gambles k on Σ_F — the restrictions to Σ_F of multivariate polynomials F on \mathbb{R}^F , in the sense $\text{that} h(\theta) = s(\theta)$ for all θ in Σ_{π} . Benstein gambles For any s in N and any s in .+*. let the Gernstein basis polynomial A_n on $\mathbb{R}^{\mathcal{X}}$ be given by $A_n(\theta) := \binom{n}{2} \prod_{i \in \mathcal{X}} A_n^{(n)}$ for all θ in $\mathbb{R}^{\mathcal{X}}$. The restric-tion to $\Sigma_{\mathcal{X}}$ is called a Gernstein gamble, which we also denote by B_{μ} , $\{B_{\mu} : \mu \in \mathcal{F}^{*}\}$ is a basis for $\mathcal{F}^{*}(\Sigma_{\mathcal{F}})$. Useful maps Consider the linear order isomorphisms

and $M_n \coloneqq CoM_n \circ H_n$:

where $M_{\alpha}(f|\theta) := \sum_{\alpha \in \mathcal{A}^{n}} \sum_{\alpha \in [\alpha]} f(\beta) \prod_{\alpha \in \mathcal{B}} \theta^{\alpha \alpha}$ is the expectation of f associated with the multinomial distribution whose parameters are a and 0. choice function C on $\mathcal{L}(\mathcal{X}^*)$ is exchangeable if and only If there is a unique representing choice function C on

given by $\hat{C}(M_{*}(A)) = M_{*}(C(A))$ for all A in $\mathcal{D}(\mathcal{L}(\mathcal{X}^{*}))$. Finally, C is coherent if and only if C is.

 $T^{*}(\Sigma_{X})$

7(2,r)

 $2(2^{*})/L_{*}$

 $\mathcal{X}(\mathcal{X})$

changeable X_i , the global possibility space is \mathcal{X}^N . We identity any gamble / on X*, with its culture

for all (x_0, \dots, x_n, \dots) in \mathcal{X}^N . Using this convention, we can identify $\mathcal{X}(\mathcal{X}^n)$ with a subset of $\mathcal{X}(\mathcal{X}^N)$ Gambles of finite structure We will call any camble that depends only on a finite number of variables a gam ble of finite structure. We collect all such gambles in

Set of indifferent gambles. The subject assesses the

sequence of variables $X_1, ..., X_n$... to be exchangeable: the is indifferent between any camble f in $\overline{Z}(\mathcal{X}^N)$ and its permuted variant π^{f} , for any π in \mathcal{P}_{n} , where n now is the (finite) number of variables that f depends upon:

is the subject's coherent set of indifferent cambles. Countable exchangeability A choice function C on $\overline{Z}(\mathcal{X}^N)$ is called compatible with I and only if to every s in N, its 3"-marginal C, is exchangeable. C, is We have an embedding: for every = in N:

 $T^{*}(\Sigma x)$ is a linear subspace of $T(\Sigma x)$.

Theorem 4 (Countable Representation). A choice function C on $\overline{\mathcal{L}}(\mathcal{K}^N)$ is exchangeable if and only if there is a unique representing choice function C on $\mathcal{T}(\Sigma_X)$ such that, for every = in N, the X*-marginal C, of C is

for all A in $\mathcal{D}(\mathcal{X}(\mathcal{X}^*))$. This \hat{C} is then given by $\hat{C}(A) :=$ $\bigcup_{n \in \mathbb{N}} C_n(A \cap T^n(\Sigma_F))$ for all A in $\mathcal{D}(T(\Sigma_F))$, with

Category permutation invariance Suppose that, in addition to is a part of his set of indifferent cambies. Therefore, the smallest exchangeability, the subject also has reason not to distinguish be-set of indifferent gambles compatible with this, is been the different elements of $\mathcal{K} := \{1, ..., k\}$: consider any

then he has reason not to distinguish between X and H(X) :=

then ne has reason not to outsinguing between X and a(X) := $(d(X)),...,d(X_i))$. With any gamble f on \mathcal{X}^n there corresponds a permuted gamble df, given by (df)(x) = f(d(x)) for all x and only if C is compatible with $both I_{F_i}$ and I^{ai} . This defines a notion of partition exchangeability for choice func-

Permutations \mathscr{P}_n is the group of permutations i_0 . If $n \in I$ then $\lambda n \in I$; of $\{1, \dots, n\}$. With any π in \mathscr{P}_n and any sequence i_0 if $n, v \in I$ then $n + v \in I$. [combi-In the finite set \mathcal{X}_i we associate its permuted option u in the equivalence class

Exchangeability When the subject assesses a for all [u] and [u] in \mathcal{T}/L measures V

With any π in \mathcal{P}_n and any gamble f in $\mathcal{L}(\mathcal{X}^n)$, guident space $\mathcal{F}/I := \{|a| : u \in \mathcal{F}\}$, which is

he is indifferent between any gamble f on \mathcal{X}^{n} indifference: compatibility with I. We call a and its permuted variant $\pi' f$, for any π in \mathcal{P} his choice function C on $\mathcal{P}(\mathcal{P})$ compatible with a coherent set of indifferent options I if there is

Quotient spaces. How do we work with this? A shart accompatible with some coherent set of indi-Quotient spaces. How do we work with this? A second accompatible with some coherent set of indi-

set of indifferent options I is coherent if for all a function C/I on $\mathcal{D}(\mathcal{F}/I)$ is given by

 $\begin{array}{ll} I_{0}, 0 \in I; & \text{[indifference to status quo]} & C/I(A/I) := C(A)/I \text{ so area or a rest or a constant of a status quo]} \\ I_{0}, I \neq C_{10} \cup T_{10} \text{ then } u \notin I; & \text{[non-triviality]} & \text{Moreover, } C \text{ is coherent } I \text{ and only } C/I \text{ is.} \end{array}$

such that

The set of all these equivalence classes is the

a representing choice function C on $\mathcal{J}(\mathcal{V}/I)$

Theorem 1. For any choice function C on D(Y)

Sone. Instead of a representation in terms of count vectors, we now obtain a representation in terms of count vectors of count vectors.

a vector space with vector ordering

Set of indifferent gamples Next to Les, also

set of indifferent gambles is

and γ in \mathcal{T} and λ in \mathbb{R} :

Exchangeability is a special indifference assessment!