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Modelling practical certainty and its link with classical propositional logic

Arthur Van Camp
Ghent University

SYSTeMS Research Group
Arthur.VanCamp@UGent.be

Gert de Cooman
Ghent University

SYSTeMS Research Group
Gert.deCooman@UGent.be

Abstract
We model practical certainty in the language of accept
& reject statement-based uncertainty models. We present
three different ways, each time using a different nature of
assessment: we study coherent models following from (i)
favourability assessments, (ii) acceptability assessments,
and (iii) indifference assessments. We argue that a state-
ment of favourability, when used with an appropriate back-
ground model, essentially boils down to stating a belief
of practical certainty using acceptability assessments. We
show that the corresponding models do not form an in-
tersection structure, in contradistinction with the coher-
ent models following from an indifferenc assessment. We
construct embeddings of classical propositional logic into
each of our models for practical certainty.

Keywords. Imprecise probabilities, accept & reject sta-
tement-based uncertainty models, classical propositional
logic, strong belief structure.

1 Introduction

In classical propositional logic, a subject who is certain of
the truth of some propositions, or equivalently, of the oc-
currence of the corresponding events, models this by giv-
ing his set of certain events—or true propositions. In this
paper, we investigate to what extent classical propositional
logic can be embedded in accept and reject statement-
based uncertainty models [9]. The embedding is not per-
fect, therefore we speak of practical uncertainty. The lan-
guage of the uncertainty models used is rich enough to en-
compass the different approaches of Walley and de Finetti.
In order to obtain more insight in these approaches, we
study three different types of assessments.

The first type of assessments fits well into Walley’s ap-
proach to defining lower previsions, and focusses on strict
preference. The second type appears to be weaker, as it
focusses on weak preference, but we show that the dif-
ference essentially does not matter: the derived coherent
models from both types of assessments are the same. The

third and last type of assessments is more in line with de
Finetti’s approach to defining previsions, and focusses on
indifference.

Because strong belief structures [2] have nice properties,
we investigate whether the derived coherent models con-
stitute such structures. It turns out that only the coherent
models derived from the third type of assessments do.

The basic concepts are introduced in Section 2. In the sub-
sequent three sections, we study three different ways of
modelling practical certainty. We start with favourability
assessments in Section 3, and study the consequences of
the rationality requirements of No Confusion, Deductive
Closure and No Limbo. We proceed with acceptability
assessments in Section 4, where we also investigate the
connection with the models of the previous section. The
last type of assessments—those based on indifference—
are discussed in Section 5. In Section 6, we find the cor-
responding coherent lower prevision models, and we in-
vestigate when they are coherent. We make the link with
(strong) belief structures in Section 7. Finally, in Sec-
tion 8, we embeds classical propositional logic into the
models introduced in this paper.

2 Notations and concepts

We consider a subject who is uncertain about the value of
a variable X that takes values in the—not necessarily finite
but non-empty—possibility space X . We want to model
this subject’s beliefs about the value that X assumes.

2.1 Events and sets of events

An event is a subset of X , or equivalently, an element
of the power set P := {A : A⊆X }: the collection of all
events. A non-empty subset C of P is called a filter base
if it is closed under finite intersections (closed under con-
junction): if both A and B are elements of C , then also
A∩B ∈ C . A filter base C is called proper if addition-
ally /0 /∈ C . A non-empty subset F of P is called a filter
if: (i) F is closed under finite intersections, and (ii) F



is increasing (closed under modus ponens): if A ∈F and
A⊆ B, then also B ∈F . A filter F is called proper if ad-
ditionally /0 /∈F , or equivalently, F 6= P . We denote the
set of all proper filters by F. A proper filter U is called an
ultrafilter if either A ∈U or Ac ∈U for all events A. We
denote the set of all ultrafilters by U.

As an example, consider a filter base C , then the set
{A ∈P : (∃B ∈ C )B⊆ A} is a filter—the filter generated
by the filter base C . It is proper if and only if the filter
base C is.

2.2 Gambles and sets of gambles

A gamble f is a bounded real-valued function on the pos-
sibility space X . It is interpreted as an uncertain reward
f (X). If the value of the variable X turns out to be x, it
results in a—positive or negative—payoff f (x), expressed
in units of some predetermined linear utility scale. The set
of all gambles on X is denoted by L .

We can compare two gambles f and g in L . We write
f ≥ g if f (x) ≥ g(x) for all x in X . For example, f ≥ 0
if f is nowhere negative, and we then say that f is non-
negative. The subset L≥0 of L is the set of all non-
negative gambles. We write f > g if f ≥ g and f 6= g. For
example, f < 0 if f is nowhere positive—so f ≤ 0—and
f (x) < 0 for at least one x in X , and we then say that f
is negative. The subset L<0 of L is the set of all negative
gambles. We write f m g if inf( f − g) > 0. For example,
f l 0 if sup f < 0, meaning that the gamble f is negative
and bounded away from zero. The subset Ll0 of L is the
set of all such gambles. We write f Bg if f (x)> g(x) for
all x in X . For example, f B0 if f is everywhere (strictly)
positive, and we then say that f is point-wise positive. The
subset LB0 of L is the set of all such gambles.

We also introduce a number of operations on sets of
gambles K ,K ′ ⊆ L . The first is the Minkowski
sum K +K ′ := { f +g : f ∈K ,g ∈K ′}. The positive
scalar hull K := {λ f : λ ∈ R>0, f ∈K } is the collec-
tion of all positive multiples of gambles in K , where we
use the notation R>a for the set of real numbers (strictly)
greater than the real number a. The positive linear hull
posiK is the collection of all positive linear combinations
of gambles in K :

posiK :=
{ n

∑
k=1

λk fk : n ∈ N,λk ∈ R>0, fk ∈K

}
,

where we use the notation N for the set of natural numbers
(positive integers). Observe that

posi(K ∪K ′) = posiK
∪posiK ′∪ (posiK +posiK ′). (1)

We call a set K a cone if posiK = K .

2.3 Accept & reject statement-based uncertainty
models

In order to have greater flexibility in expressing beliefs,
we use the framework and language of accept & reject
statement-based uncertainty models, as introduced and de-
scribed in detail by Quaeghebeur et al. [9]. In contrast with
the slightly older and more common framework of sets of
desirable gambles [1, 4, 13], where the subject gives only
one set of gambles, in this framework a subject is supposed
to give two sets: a set of acceptable gambles A�⊆L , and
a set of rejected gambles A≺ ⊆L . An assessment is then
represented by A = 〈A�;A≺〉. Following the discussion
in Ref. [9], a subject’s accepting a gamble f implies a com-
mitment for him to engage in the following transaction: (i)
the actual value x of the variable X is determined, and (ii)
the subject gets the—possibly negative—payoff f (x). On
the other hand, the subject’s rejecting a gamble implies
that he excludes it from being accepted.

From an assessment, one can derive other types of state-
ments. For any gamble f ∈A' :=A�∩−A�, the subject
accepts both f and its negation − f . We say that he is in-
different about f , and A' is his set of indifferent gambles.
For any f ∈AB := A�∩−A≺, the subject accepts f and
rejects its negation − f . We say that he finds f favour-
able, and AB is his set of favourable gambles. These are
the gambles that the subject strictly prefers to 0, which is
the interpretation that is usually given to desirable gambles
[1, 4]. Finally, gambles in the set A^ := L \ (A�∪A≺)
are called unresolved. For unresolved gambles no accept
or reject statement has been made.

3 Modelling practical certainty using
favourability

3.1 Assessment

If a subject is practically certain that a proposition is true,
or that the corresponding event A occurs, we will first
take this to mean that he finds any gamble of the form
IA− 1+ ε , with ε ∈ R>0, favourable.1 Here IA is the in-
dicator of the event A, which assumes the value 1 on A (if
the proposition is true) and 0 elsewhere. Finding IA−1+ε

favourable means: (i) the transaction that yields ε if A oc-
curs and ε − 1 otherwise, is accepted, and (ii) the trans-
action that yields −ε if A occurs, and 1− ε otherwise, is
rejected (excluded from being accepted). The first assess-
ment means that the subject accepts to bet on A at odds
ε/(1− ε), and the second that he excludes accepting a bet
against A at odds (1− ε)/ε . So our subject accepts to bet
on A at all odds, and rejects betting against A at any odds.

A subject can be practically certain about a number of

1Actually, it is enough to look at ε ∈ (0,1), because for ε ≥ 1, IA−
1+ ε ∈L≥0 already belongs to the background model; see further on.



events. We collect the events he is practically certain about
in the set T ⊆P . So his initial assessment is:

A = 〈AB;−AB〉
with AB = {IA−1+ ε : A ∈T ,ε ∈ R>0} . (2)

Even before an assessment is given, some gambles can
be presumed to be accepted and others to be rejected.
Such a priori assumptions can be captured by positing a
background model S . In the context of favourability as-
sessments, it follows from the discussion in Ref. [9, Sec-
tion 5] that it is convenient to use the following back-
ground model:

S = 〈L≥0;L<0〉 ,

so we take for granted that all non-negative gambles
should be accepted, and all negative gambles should be
rejected—be excluded from being accepted. The back-
ground model S is an instance of a favour-indifference
model [9, Section 4.3], meaning that it fulfils the two con-
ditions −S≺ ⊆S� and S� = SB∪S'.

We use B := A ∪S = 〈AB∪L≥0;−AB∪L<0〉 to de-
note the smallest assessment that includes both the sub-
ject’s assessment A and the background model S .

Clearly, we will have to impose conditions on the set T
of events that the subject is practically certain to occur. To
give just one example, suppose T = P , then the subject
is practically certain about the occurrence of every event
and of its complement, which—as we shall see—is not a
rational belief. The conditions we impose on the set T
follow from three rationality criteria, described in full de-
tail in Ref. [9]. In the next three sections, we discuss these
rationality criteria and the resulting requirements on T .

3.2 Deductive closure

That we are working with a linear utility scale for rewards
has certain consequences. If the gambles f and g are ac-
ceptable, then so should be f +g, and λ f , with λ ∈ R>0.
These two observations are summarised in the deductive
extension extD:

extD B := 〈posiB�;B≺〉 ,

and we call an assessment D deductively closed if
extD D = D . This leads us to the first rationality criterion:
assessments should be deductively closed.
Proposition 1. The positive linear hull of B� is given
by posiB� = L≥0 ∪L m

T , where we use the notations
L m

T := { f ∈L : (∃B ∈ CT ) inf( f |B)> 0},2 inf( f |B) :=
inf{ f (x) : x ∈ B} and

CT :=
{ n⋂

k=1

Ak : n ∈ N,Ak ∈T

}
(3)

2We let inf( f | /0) be +∞ everywhere.

is the collection of all finite intersections of elements of
T . Note that posiB� 6= L if and only if /0 /∈ CT , mean-
ing that T has the intuitively appealing finite intersection
property.

Proof. We infer from Eq. (1) that posi(AB∪L≥0) = posiAB∪
L≥0∪ (posiAB+L≥0). Since 0 ∈L≥0, we see that posiAB+
L≥0 ⊇ posiAB, and therefore posi(AB ∪ L≥0) = L≥0 ∪
(posiAB+L≥0). A gamble f belongs to posiAB+L≥0 if and
only if there are n ∈ N, λ1, . . . ,λn ∈ R>0, A1, . . . ,An ∈ T and
ε1, . . . ,εn ∈ R>0 such that

f ≥
n

∑
k=1

λk(εk− IAc
k
).

By an appropriate choice of the λk > 0 and the εk ∈ (0,1), the
lower bound in the inequality above can be made arbitrarily low
(negative) provided that

⋂n
k=1 Ak = /0, and only then. This shows

that /0 ∈ CT ⇔ posiAB+L≥0 = L . So let us assume that /0 /∈
CT .

Consider any gamble f in posiAB+L≥0, then there are n ∈ N,
λ1, . . . ,λn ∈ R>0, A1, . . . ,An ∈ T and ε1, . . . ,εn ∈ R>0 such
that f ≥ ∑

n
k=1 λk(εk − IAc

k
), and therefore inf( f |

⋂n
k=1 Ak) ≥

∑
n
k=1 λkεk > 0.

Conversely, if inf( f |
⋂n

k=1 Ak) =: δ > 0 for some n ∈ N and
A1, . . . ,An ∈ T , then let all λk > λ := δ − inf f ≥ 0 and all
εk := δ

nλk
> 0, so

n

∑
k=1

λk(εk− IAc
k
)≤ I⋂n

k=1 Ak
δ + I⋃n

k=1 Ac
k
(δ −λ )

= I⋂n
k=1 Ak

δ + I⋃n
k=1 Ac

k
inf f ≤ f ,

meaning that f ∈ posiAB+L≥0.

For notational convenience, we define L l
T :=−L m

T .

The set CT , as defined in Eq. (3), satisfies all the require-
ments for a filter base. It is called the filter base generated
by the set T .

The deductively closed extD B is not yet “perfect enough”:
for it to be a so-called model, we need to further impose
the criteria of No Confusion and No Limbo.

3.3 No Confusion

Given the interpretation attached to an accept and to a
reject statement, there should be no gambles in the set
(extD B)G := (extD B)�∩ (extD B)≺: a gamble cannot be
accepted and rejected at the same time. This observation
leads us to the second rationality criterion: deductively
closed assessments need to have

No Confusion: (extD B)G = /0.

The following proposition gives the conditions to be im-
posed on T in order to have No Confusion.



Proposition 2. The deductively closed assessment extD B
has No Confusion if and only if T satisfies the finite in-
tersection property:

⋂n
k=1 Ak 6= /0 for all n ∈ N and all

A1, . . . ,An ∈T , or equivalently, /0 /∈ CT .

Proof. extD B has No Confusion if and only if L m
T ∩−AB = /0,

L≥0 ∩−AB = /0, L m
T ∩L<0 = /0 and L≥0 ∩L<0 = /0. The

last intersection is obviously empty, and the condition for the
third one to be empty is clearly that /0 /∈ CT , taking into account
Prop. 1.

The second intersection L≥0∩−AB is empty if and only if IAc−
ε � 0 for all events A in T and all ε ∈ R>0, which is equivalent
with /0 /∈T .

The first intersection is non-empty if and only if there are A ∈
T and B ∈ CT such that inf(IAc − ε|B) > 0 for some ε ∈ R>0,
or equivalently, such that B∩A = /0. This tells us that the first
intersection is empty if and only if

(∀A ∈T )(∀B ∈ CT )B∩A 6= /0,

which is equivalent with /0 /∈ CT .

Because of its form, CT is a filter base. Moreover, No
Confusion is equivalent to CT being a proper filter base:
in addition to CT being closed under finite intersections, it
cannot contain the empty set. From now on, we consider
only proper filter bases CT , or equivalently, sets T that
satisfy the finite intersection property.

3.4 No Limbo

For extD B to be a model, besides being deductively closed
and having No Confusion, it also needs to satisfy a third
and last rationality criterion: it must have No Limbo.

To see what this means, consider any deductively closed
assessment D = 〈D�;D≺〉 with No Confusion. At this
point, all the gambles in D^ = L \ (D� ∪D≺) are unre-
solved, and can therefore in principle still be accepted or
rejected. But it is proved in Ref. [9, Corollary 6] that the
gambles in the so-called limbo(

D≺− (D�∪{0})
)
\D≺, (4)

which is a subset of D^, cannot be made acceptable
without creating Confusion. In other words, these are the
unresolved gambles that have exactly the same effect as
gambles in D≺: if we considered them as acceptable too,
the resulting assessment would have Confusion. So they
are still in an unresolved state, but if we want to avoid Con-
fusion, there is nothing for it: we must also reject them.

Starting from the deductively closed assessment D with
No Confusion, additionally rejecting the gambles that are
in its limbo results in its reckoning extension extM:

extM D :=
〈
D�;D≺∪

(
D≺−D�

)〉
, (5)

and we say that a deductively closed assessment D without
Confusion has No Limbo if and only if extM D = D , or
equivalently, if and only if the set in Eq. (4) is empty.

We end up with M := extM extD B, a model that is de-
ductively closed and has No Limbo and No Confusion; see
Ref. [9, Prop. 7] for details. We call it a coherent model.
The next proposition characterises M , where the notation
emphasises the set of favourable gambles.

Proposition 3. The coherent model M = extM extD B is
given by M = 〈MB∪{0};−MB〉, with

MB := L m
T ∪L>0.

Proof. The proof for the set of acceptable gambles M� fol-
lows from Prop. 1, (extM D)� = D� and L≥0 = L>0 ∪ {0}.
Taking into account Eq. (5) and Prop. 1, the set of rejected
gambles is given by M≺=B≺∪

(
B≺− (L≥0∪L m

T )
)
=B≺−

(L≥0 ∪L m
T ), where we used the fact that 0 ∈ L≥0. Because

A≺∪L<0 = A≺∪L<0, it follows that

M≺ = (A≺∪L<0)− (L≥0∪L m
T )

=
(
A≺−L≥0

)
∪
(
A≺−L m

T

)
∪ (L<0−L≥0)∪

(
L<0−L m

T

)
.

(6)

We first prove that L<0∪L l
T ⊆M≺. Observe that L<0⊆A≺∪

L<0 ⊆ (A≺ ∪L<0)− (L≥0 ∪L m
T ) = M≺, where the last in-

clusion holds because 0 ∈L≥0. To show that also−L m
T ⊆M≺,

use the next Lem. 1 to see that −L m
T = (−L m

T )+L<0, and by
Eq. (6), this is a subset of M≺.

Next, we prove that L<0 ∪L l
T ⊇M≺. We prove that each of

the four terms of the union of Eq. (6) is a subset of L<0 ∪L l
T .

To do so, it is useful to remark that

L l
T = posi(A≺+L≤0)⊇ posiA≺ ⊇A≺. (7)

For A≺ −L≥0, use Eq. (7) to infer that A≺ ⊆ −L m
T , so

A≺ −L≥0 ⊆ −L m
T −L≥0 = −L m

T , where the equality fol-
lows from Lem. 1. For A≺ −L m

T , use Eq. (7) to obtain
A≺−L m

T ⊆−L m
T −L m

T =−L m
T , where the equality follows

from the fact that −L m
T is a cone. Since L<0−L≥0 = L<0,

it only remains to consider the last term: use Lem. 1 to find that
L<0−L m

T =−L m
T .

Lemma 1. For any collection of events T ⊆P that sat-
isfies the finite intersection property, L m

T = L m
T +L>0 =

L m
T +L≥0.

Proof. Since 0 ∈L≥0, we have L m
T ⊆L m

T +L≥0, and since
L>0 ⊆L≥0, also L m

T +L>0 ⊆L m
T +L≥0. The proof is com-

plete if we can prove that L m
T +L≥0 is also included in both

L m
T and L m

T +L>0. Consider any gamble f ∈ L m
T +L≥0,

so there are g ∈ L and B ∈ CT such that δ := inf(g|B) > 0
and f ≥ g. This means that also inf( f |B) > 0, and therefore
f ∈L m

T . Also, consider the gamble h := δ/2IB + gIBc < f . Be-
cause inf(h|B) = δ/2 > 0, it follows that h ∈L m

T and therefore
f = h+( f −h) ∈L m

T +L>0.



To summarise, we started out with the assessment A of a
subject who is practically certain of the occurrence of all
events in T , and added the background model S , leading
to a larger assessment B = A ∪S . Using deductive and
reckoning extension, and by imposing restrictions on T ,
namely that T has the finite intersection property, we ad-
ded acceptable as well as rejected gambles to end up with
the coherent model M = extM extD B. Prop. 3 guarantees
that, as was the case for the initial assessment of Eq. (2),
the coherent model M is fully determined by the set of
favourable gambles

MB = { f ∈L : (∃B ∈ CT ) inf( f |B)> 0}∪L>0,

leaving aside the always indifferent zero gamble. Because
M is a coherent model, we call this set MB a coherent
set of favourable gambles. In this model M , 0 is the
only indifferent gamble: M' = M� ∩−M� = {0}, and
M is an instance of a favour-indifference model, because
−M≺ ⊆M� and M� = MB∪M'.

3.5 Finding all practically certain events

We now ask ourselves whether the inference procedure de-
scribed above, which allowed us to infer from the set of fa-
vourable gambles AB the larger set of favourable gambles
MB, bears any relationship to inference in classical pro-
positional logic? Which are the other events, besides the
ones in T , that the inference procedure tells us our sub-
ject, if he is rational, should also be practically certain of?

As we have suggested above, a subject who is certain
about an event A expresses this as finding favourable the
gambles of the form −IAc + ε , with ε ∈ R>0. We denote
the corresponding set of favourable gambles by A A

B :=
{−IAc + ε : ε ∈ R>0}. The question therefore becomes:
for which events A is the set A A

B a subset of MB? As
the gambles in A A

B are, for ε small enough, positive only
on A, the answer to this question is immediate:

A A
B ⊆MB⇔ (∃B ∈ CT )B⊆ A.

This tells us that the subject should be practically certain
of all events in the filter generated by T :

FT := {A ∈P : (∃B ∈ CT )(B⊆ A)} .

This is a proper filter provided that /0 /∈ CT . Also observe
that L m

T = { f ∈L : (∃B ∈FT ) inf( f |B)> 0}.

Any filter is a set-theoretic counterpart of a collection of
propositions that is deductively closed (closed under con-
junction and modus ponens), and the generated filter cor-
responds to the deductive closure of a set of propositions,
in classical propositional logic. We see that on our specific
interpretation of it—or semantics for it—the logic of prac-
tical certainty has the same basic machinery as classical

propositional logic. In simple terms: if someone is prac-
tically certain that both the events A and B occur, it is reas-
onable to be practically certain of A∩B; and if someone is
practically certain that the event A occurs, then it is reas-
onable to be practically certain of every event B⊇ A.

Our argument goes further than that, because it also allows
us to infer which gambles a subject should find favourable
if he is practically certain that all events in T occur: all
gambles in MB, which are the gambles that are strictly
positive, or that have a strictly positive return, bounded
away from zero, on some practically certain event.

4 Modelling practical certainty using
acceptability

When a subject is practically certain that an event A oc-
curs, we have taken this to mean, in Section 3, that he
finds favourable every gamble of the form −IAc + ε , with
ε ∈ R>0. Here, we repeat the same reasoning with a
weaker assessment of acceptability, rather than favourabil-
ity: if a subject is practically certain that an event A occurs,
we now take this to mean that he finds every gamble of the
form−IAc +ε , with ε ∈R>0, acceptable. With T the col-
lection of events he is practically certain of, his assessment
is therefore:

A − := 〈{−IAc + ε : A ∈T ,ε ∈ R>0} ; /0〉 .

We make the same a priori assumptions summarised in the
background model S = 〈L≥0;L<0〉, leading to the smal-
lest background-including assessment B− = A −∪S .

In the next proposition, we determine the relationship
between M− = extM extD B− and M , and show that the
(apparently) weaker acceptability assessment leads to the
same conclusions.3

Proposition 4. Using deductive extension we obtain
extD B− =

〈
L≥0∪L m

T ;L<0
〉
. This deductively closed

assessment has No Confusion if and only if T satisfies the
finite intersection property. The corresponding coherent
model is M− = extM extD B− = M .

Proof. The argument is analogous to, but less involved than,
that in the proofs of Props. 1–3.

5 An alternative way of modelling practical
certainty using indifference

Williams [15] and Walley [12] define a lower prevision p
for a gamble f as a supremum acceptable buying price:

3The equivalence between the implications of favourability and ac-
ceptability assessments does not hold in more general cases. As an ex-
ample, consider the background model 〈L≥0; /0〉. Then the conclusions
from every non-empty favourability assessment differs from the corres-
ponding acceptability assessment.



the highest price p such that f − p+ ε is acceptable—or
equivalently as it turns out, favourable—for all ε > 0. In
the previous sections, we have used an approach with a
very similar flavour to account for practical certainty: the
supremum acceptable buying price for (the indicator of) a
practically certain event is 1.

The approach that Bruno de Finetti [5, 7] follows in de-
fining the (precise) prevision p for a gamble f , is rather
different:4 it is the unique number p such that the subject
is indifferent between the uncertain f and the fixed p, or
equivalently, between f − p and 0.

We therefore also propose an alternative way of model-
ling practical certainty, more along the lines of de Finetti’s
approach to previsions: we model a subject’s practical cer-
tainty of the occurrence of an event A by an assessment of
indifference between IA and 1, or equivalently, between
IAc and 0. This amounts to a statement of acceptability
for both IAc and its negation −IAc . But, since IAc ≥ 0,
and since we will use L≥0 as a background model for ac-
ceptability, meaning that all non-negative gambles are a
priori assumed to be acceptable (see further on), we need
only explicitly state the acceptability of−IAc . This assess-
ment is stronger than the corresponding one in the previ-
ous sections: here the subject actually accepts the gamble
−IAc , whereas before he only accepted gambles of the
form −IAc + ε , with ε ∈ R>0.

If our subject is practically certain of every event in the
collection T ⊆P , this leads to the (indifference) assess-
ment:

A ′ := 〈{−IAc : A ∈T } ; /0〉 .
Before, we used the background model S = 〈L≥0;L<0〉.
The nature of an indifference assessment no longer allows
us to use S as background model, as this would lead to
difficulties: since −IAc ∈L<0 if Ac 6= /0, in order to avoid
No Confusion, the set T can only contain the trivial cer-
tain event X .5 For this reason, we propose a slightly more
conservative background model:

S ′ = 〈L≥0;LC0〉 ,

where we take for granted that all non-negative gambles
should be accepted, and all gambles that are point-wise
(strictly) negative should be rejected:

LC0 := { f ∈L : (∀x ∈X ) f (x)< 0} .

We use B′ :=A ′∪S ′ =
〈
A ′
�∪L≥0;LC0

〉
to denote the

smallest assessment that includes both the subject’s indif-
ference assessment A ′ and the background model S ′.

In this section, due to page limitations, and because the
reasoning uses similar arguments to the ones in Section 3,
we will omit the proofs.

4For an extensive discussion of the difference between the two ap-
proaches, we refer to Refs. [9] and [11].

5See also the discussion in Ref. [9, Section 5].

As before, in order to obtain a coherent model, we have to
impose rationality conditions on the set T of practically
certain events, which we explore next.

5.1 Deductive closure

The first rationality criterion states that we have to accept
every gamble that can be deduced from B′�: the deductive
closure is extD B′ =

〈
posiB′�;B′≺

〉
.

Proposition 5. The positive linear hull of B′� is

posiB′� = L ≥
T := { f ∈L : (∃B ∈ CT )IB f ≥ 0} ,

with CT defined as in Eq. (3). Note that posiB′� 6= L if
and only if /0 /∈ CT .

Compared with posiB�, posiB′� contains more gambles:
those gambles f that are non-negative on an event B in
CT , but for which inf( f |B) is zero.

5.2 No Confusion

The second rationality criterion requires that the deduct-
ively closed assessment extD B′ should have No Confu-
sion. This leads to the same condition on T as before in
Section 3:

Proposition 6. The deductively closed assessment extD B′

has No Confusion if and only if T satisfies the finite inter-
section property, or equivalently, if /0 /∈ CT .

As in Section 3, the second rationality criterion turns CT

into a proper filter base. From now on, we will assume CT

to be proper.

5.3 No Limbo

The final rationality criterion of No Limbo leads us to
apply the reckoning extension extM to the deductive ex-
tension extD B′ with No Confusion, leading to a coherent
model M ′ := extM extD B′.

Proposition 7. The coherent model M ′ is given by M ′ =〈
M ′
�;M ′

≺
〉
, with M ′

� =L ≥
T and M ′

≺ =−L B
T =L C

T :=
{ f ∈L : (∃B ∈ CT )(∀x ∈ B) f (x)< 0}.

The corresponding set of favourable gambles M ′
B is:

M ′
B = M ′

�∩−M ′
≺ = L ≥

T ∩L B
T = L B

T

= { f ∈L : (∃B ∈ CT )(∀x ∈ B) f (x)> 0} .

5.4 Finding all practically certain events

As in Section 3.5, we ask ourselves whether, in addition to
the events in T , the criteria of rationality allow the subject
to infer the practical certainty of more events. Since, here,
we are modelling practical certainty via indifference, we



look at the indifferent gambles M ′
' in the coherent model

M ′, and our subject is practically certain about an event
A precisely when he is indifferent about IAc , meaning that
−IAc (in addition to IAc ) belongs to his inferred set of in-
different gambles M ′

' = M ′
�∩−M ′

�.

So let us look for an expression for M ′
'. This set contains

the gambles for which there are B and B′ in CT such that
both IB f ≥ 0 and IB′ f ≤ 0. Since CT is closed under finite
intersections, we find that

M ′
' = { f ∈L : (∃B ∈ CT )IB f = 0}
= { f ∈L : (∃B ∈FT )IB f = 0} ,

and therefore also

−IAc ∈M ′
'⇔ (∃B ∈ CT )Ac∩B = /0⇔ A ∈FT .

This tells us that the subject can be practically certain of
all events A in the proper filter FT generated by T , as
in Section 3.5. Here too, our approach allows us to say
even more: the subject should regard as favourable all
gambles that are (strictly) positive on some practically cer-
tain event, and be indifferent about any gamble that is zero
on some practically certain event.

6 Coherent lower prevision and coherent
lower probability

6.1 Coherent lower prevision

With every set of favourable gambles we can associate a
lower prevision P and an upper prevision P. Lower previ-
sions (or lower expectation functionals) P as wel as upper
previsions (or upper expectation functionals) P are real-
valued functionals defined on L . Given any set of favour-
able gambles D , then the corresponding lower prevision P
and upper prevision P are defined by:

P( f ) := sup{µ ∈ R : f −µ ∈D} and

P( f ) := inf{µ ∈ R : µ− f ∈D} for every f in L .

If the defining set of favourable gambles is coherent, then
we call P and P coherent. Since P( f ) =−P(− f ) for every
f ∈ L , lower and upper previsions contain the same in-
formation, and we focus on lower previsions.

Let us calculate the coherent lower prevision correspond-
ing with MB. For any gamble f , P( f ) is the supremum µ

such that f −µ is an element of MB, or equivalently, it is
the supremum µ such that

µ < f or (∃B ∈ CT )µ < inf( f |B).

This tells us that P( f ) is the maximum of inf f and
supB∈CT

inf( f |B). Since the latter number is never smaller

than the former, we conclude:6

P( f ) = sup
B∈CT

inf( f |B) = sup
B∈FT

inf( f |B).

To make explicit the proper filter of events CT we are us-
ing, we denote this lower prevision also as PFT

. Observe
that PFT

is coherent if and only if CT is a proper filter
base.

Using a similar argument as above, it follows that the
lower prevision P′ corresponding with the set of favour-
able gambles M ′

B is the supremum µ such that (∃B ∈
CT ) inf( f |B) > µ , whence P′( f ) = supB∈CT

inf( f |B) =
P( f ) for every gamble f ∈L . This tells us that, regard-
less of whether we formulate practical certainty using fa-
vourability or indifference assessments, we end up with
the same corresponding coherent lower prevision.

6.2 Coherent lower probability

With every lower prevision P, we can associate a lower
probability Q. A lower probability Q is a real-valued set
function defined on P . Given a lower prevision P, then
the corresponding lower probability Q is defined by:

Q(A) := P(IA) for each event A in P .

If the defining lower prevision is coherent, then the corres-
ponding lower probability is called coherent as well.

We look at the lower probability RFT
corresponding with

the lower prevision PFT
. For any event A, the lower prob-

ability RFT
(A) equals supB∈CT

inf(IA|B). Since inf(IA|B)
is 1 if B⊆ A and 0 otherwise, we have:

RFT
(A)=

{
1 if (∃B ∈ CT )B⊆ A
0 otherwise.

=

{
1 if A ∈FT

0 otherwise.

This lower probability is coherent because PFT
is. This

tells us that the subject is willing to bet at all odds on the
occurrence of every event A ∈FT . For all other events,
he has no commitment whatsoever: he is only willing to
bet on these other evens at zero odds. Compare this with
the discussion in Sections 3.5 and 5.4.

Conversely, an event A for which the upper probability is
zero—which means that the subject is willing to bet at all
odds against the occurrence of A—reflects practical cer-
tainty that A does not occur. For an event A, the upper
probability RFT

(A) equals infB∈CT
sup(IA|B), which is

zero iff A ∈ I := {Bc : B ∈T }. This ideal7 of subsets
I is the set of events the agent is practically certain will
not occur.

6This lower prevision constitute a particular case of the so-called filter
maps, see [3].

7The notion of an ideal is the dual notion of a filter: an ideal I is a
subset of P that is closed under finite unions (A∪B∈I when A,B∈I )
and decreasing (if A ∈I and B⊆ A, then also B ∈I ).



7 Connection with strong belief structures

7.1 Strong belief structures

For this section, we will need some extra notation. We call
A the collection of all the assessments—with or without
Confusion: A = {〈D�;D≺〉 : D�,D≺ ⊆L }. Assess-
ments in A can be partially ordered by set inclusion ⊆:
with two assessments D and D ′ in A, we write D ⊆D ′ if
and only if D� ⊆D ′� and D≺ ⊆D ′≺. The corresponding
partially ordered set is denoted by (A,⊆).

Not all assessments in A are of interest; we can restrict
our attention to some generic subclass of models M ⊆ A.
This M inherits the partial order ⊆ from A. We call M̂
the set of maximal, or undominated, models in M: M̂ :=
{D ∈M : (∀D ′ ∈M)(D ⊆D ′⇒D = D ′)}. In contra-
distinction with A, where Â = {〈L ;L 〉} is its top (and
unique maximal element), the family of models M may
have no, one or multiple maximal elements.

We are interested in whether the structure (A,M,⊆) is a
strong belief structure [2], meaning that it satisfies the fol-
lowing four criteria:

S1. (A,⊆) is a complete lattice: for any subset B of A,
its supremum supB and its infimum infB with re-
spect to the order ⊆ exist. Here the component-wise
union operator

⋃
plays the role of supremum and the

component-wise intersection operator
⋂

that of in-
fimum.

S2. (M,⊆) is a (component-wise) intersection structure,
meaning that M is closed under arbitrary non-empty
infima: for any non-empty subset B ofM, infB ∈M.

S3. The partially ordered set (M,⊆) has no top.

S4. The partially ordered set (M,⊆) is dually atomic:
M̂ 6= /0 and D = inf

{
D ′ ∈ M̂ : D ⊆D ′

}
if D ∈M.

A structure (A,M,⊆) that satisfies requirements S1–S3 is
called a belief structure. The relevance of the additional
requirement S4 is that the maximal coherent models can
be used to construct any coherent model. We want to in-
vestigate whether the coherent models encountered in Sec-
tions 3 and 5 constitute strong belief structures.

7.2 Favourability of acceptability assessments

We consider the family of models for practical certainty
following from favourability or acceptability assessments,
as described in Sections 3 and 4:

C :=
{〈

L m
F ∪L≥0;L l

F ∪L<0
〉

: F ∈ F
}
.

For this family C, it is not difficult to show by means of a
counterexample that (A,C,⊆) does not constitute a strong
belief structure: it is not even a belief structure as it viol-
ates requirement S2.

7.3 Indifference assessments

We consider the family of models for practical certainty
following from indifference assessments, as described in
Section 5:

C′ :=
{〈

L ≥
F ;L C

F

〉
: F ∈ F

}
.

The elements of C′ are the coherent models identified in
Prop. 7, and to make explicit which filter we are using,
we denote them by M ′ (F ) =

〈
M ′
�(F );M ′

≺(F )
〉

:=〈
L ≥

F ;L C
F

〉
. In contrast with the structure considered in

Section 7.2, (A,C′,⊆) is a strong belief structure.

Proposition 8. (A,C′,⊆) is a strong belief structure.

Proof. We have to prove that (A,C′,⊆) fulfils the requirements
S1–S4. S1 is fulfilled thanks to [9, Section 2.6]. S2 is fulfilled
thanks to the next Lem. 2. For S3, consider Lem. 4 and take
into account that the set of maximal elements of F is the set of
ultrafilters U, so C′ has no top. S4 is fulfilled thanks to Lem. 4
and the Ultrafilter Theorem [10].

Lemma 2. (C′,⊆) is an intersection structure.

Proof. Consider an arbitrary non-empty subset B⊆ C′. We can
describe B using a family of filters Fi, i∈ I with a non-empty in-
dex set I 6= /0: B = {M ′ (Fi) : i ∈ I}. We now have to prove that
infB ∈ C′, or equivalently, that

⋂
i∈I M ′ (Fi) ∈ C′, since tak-

ing infima corresponds to taking component-wise intersections.
Consider any gamble f , then:

f ∈
⋂
i∈I

M ′
�(Fi)⇔ (∀i ∈ I)(∃Bi ∈Fi)(∀x ∈ Bi) f (x)≥ 0

⇔ (∃B ∈
⋂
i∈I

Fi)(∀x ∈ B) f (x)≥ 0.

For the second equivalence the converse implication is trivial.
The direct implication holds because it follows that (∀x ∈⋃

i∈I Bi) f (x) ≥ 0 and
⋃

i∈I Bi belongs to all F j, j ∈ I. By the
next Lem. 3,

⋂
i∈I Fi is a proper filter. Using a completely similar

argument leads to a similar conclusion for the rejected gambles⋂
i∈I M ′

≺(Fi).

The proof of Lem. 2 tells us more than thatC′ is closed un-
der arbitrary non-empty intersections; it also tells us how
to find the filter that is associated with this intersection:⋂

i∈I

M ′ (Fi) = M ′
(⋂

i∈I

Fi

)
. (8)

Lemma 3. Given a non-empty family of proper filters Fi,
i ∈ I, F :=

⋂
i∈I Fi ∈ F.

Proof. Since /0 /∈Fi, also /0 /∈F . Because X ∈Fi for every
i∈ I, also F 6= /0. Furthermore, let A,B∈F , meaning that A,B∈
Fi for every i ∈ I. Then also also A∩B ∈ Fi for every i ∈ I,
what tells us that A∩B ∈ F , meaning that F is closed under
conjunction. Finally, let A ∈ F and B ⊇ A. Then B ∈ Fi for
every i ∈ I, whence B ∈F , meaning that F is increasing.



Lemma 4. The partially ordered sets (C′,⊆) and (F,⊆)
are order isomorphic, meaning that there is a bijection φ

from C′ to F such that M ′ (Fk) ⊆M ′ (F`) if and only if
φ (M ′ (Fk))⊆ φ (M ′ (F`)) for all M ′ (Fk) ,M

′ (F`) ∈
C′.

Proof. Consider the map φ from C′ to F defined by
φ (M ′ (F )) := F . φ is clearly injective and surjective, and
therefore a bijection. We then have to prove for all Fk,F` ∈ F
that M ′ (Fk) ⊆M ′ (F`) if and only if Fk ⊆ F`. The ‘if’ is
immediate from the definition of the Fi. For the ‘only if’, start
with M ′ (Fk)⊆M ′ (F`), and focuss on the accepted gambles.
It follows that M ′

�(Fk) ⊆M ′
�(F`). This is equivalent with

(∀Bk ∈Fk)(∃B` ∈F`)B` ⊆ Bk. Since F` is increasing, it fol-
lows that Fk ⊆F`.

8 Embedding classical propositional logic
into models for practical certainty

We want to formally embed classical propositional lo-
gic into our framework. Since, in contradistinction with
the models following from favourability assessments, the
models that follow from indifference assessments consti-
tute an intersection structure, this embedding is easier for
the latter models.

8.1 Indifference assessments

Eq. (8) and Lem. 4 tell us that that language of proper fil-
ters is interchangeable with the language of models fol-
lowing from indifference assessments as far as modelling
practical certainty is concerned.

8.2 Favourability assessments

Since the partially ordered set (C,⊆) is no intersection
structure, there is no counterpart to Eq. (8):

⋂
i∈I

M (Fi)⊇M

(⋂
i∈I

Fi

)
,

where M (F ) :=
〈
L m

F ∪L≥0;L l
F ∪L<0

〉
∈ C, but the

converse inclusion does not generally hold. Despite of this
observation, Prop. 9 guarantees that we can still find an
embedding of the set of filters F into C.

Proposition 9. Consider a coherent set of favourable
gambles DB derived from a coherent model that includes
the background model S and take any collection of
events A ⊆ P such that MB (A ) ⊆ DB. Let F :=
{B ∈P : (∀ε ∈ R>0)− IBc + ε ∈DB}, then

(i) F ∈ F; (ii) MB (F )⊆DB; (iii) A ⊆F .

Proof. Due to [9, Prop. 8 (iii)], DB is a cone, and SB ⊆ DB.
This guarantees, by the way, that we can always find such A : if

DB = SB, use A = {X }. No Confusion guarantees that L≤0
and DB are disjoint, ensuring that /0 /∈F . Since ε ∈ DB for all
ε ∈ R>0, we see that X ∈F , ensuring that F 6= /0. Consider
two events A,B ∈F , then both −IAc + ε1 and −IBc + ε2 ∈ DB

for all ε1,ε2 ∈ R>0, so also ε1 + ε2 − IAc − IBc ∈ DB. From
this, we infer ε1 + ε2− IAc − IBc ≤ ε1 + ε2− I(A∩B)c ∈ DB for
all ε1,ε2 ∈ R>0, so A∩B ∈ F , meaning that F is closed un-
der finite intersections. Consider an event A ∈ F and B ⊇ A,
then −IAc +ε ∈DB for all ε ∈R>0. Because −IAc ≤−IBc , also
−IBc + ε ∈ DB, so B ∈F , meaning that F is increasing. This
proves (i).

For (ii), consider any gamble f ∈ MB (F ). Then there is
some B ∈ F such that inf( f |B) =: δ > 0, and it follows that
f ≥ IBc inf f + IBδ = IBc γ + δ , where γ := inf( f )− δ ≤ 0. Be-
cause of the definition of F and taking into account that DB is a
cone that includesR>0, {−λ IBc + ε : λ ∈ R≥0,ε ∈ R>0}⊆DB,
hence f ∈DB.

For (iii), consider any event B ∈ A . Then −IBc + ε ∈MB (A )

because inf(−IBc + ε|B)> 0. Since MB (A )⊆DB by assump-
tion, then also −IBc + ε ∈DB, which tells us that B ∈F .

9 Conclusions

We have shown that the language of accept & reject
statement-based uncertainty models is well-suited for de-
scribing practical certainty about the validity of some pro-
positions, or the occurrence of the corresponding events.
We have studied three different ways of translating such
beliefs of practical certainty into this language, each time
modelled by a different type of assessment. All three types
formulations lead to the same logical inferences: a collec-
tion of events the subject is practically certain of must be
closed under conjunction and modus ponens. This conclu-
sion can be drawn as well by calculating the corresponding
coherent lower probability: it is formulated in terms of a
filter. We concluded with the result that the collection of
coherent models following from the latter type of assess-
ments constitute a strong belief structure, and we found a
belief embedding of classical propositional logic into all
our models for practical certainty.

Future goals include deriving belief expansion and belief
revision operators in the language of sets of favourable
gambles, inspired by the ideas in [2].
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