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Abstract We present a method for learning imprecise local uncertainty models
in stationary hidden Markov models. If there is enough data to justify precise local
uncertainty models, then existing learning algorithms, such as the Baum–Welch
algorithm, can be used. When there is not enough evidence to justify precise
models, the method we suggest here has a number of interesting features.
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1 Introduction

In practical applications of reasoning with hidden Markov models, or HMMs, an import-
ant problem is the assessment of the local uncertainty models. In many applications, the
amount of data available for learning the local models is limited. This may be due to
the costs of data acquisition, lack of expert knowledge, time limitations, and so on [4,9].
In this case, we believe using precise(-probabilistic) local uncertainty models is hard to
justify. This leads us to use imprecise(-probabilistic) local uncertainty models, turning
the HMM into an imprecise hidden Markov model (iHMM).

Convenient imprecise probability models are coherent lower previsions, see [6] for
a detailed exposition. In this paper we develop a method for learning imprecise local
models, in the form of coherent lower previsions, in iHMMs.

Learning of iHMMs has been explored earlier [1,5]. However, these papers deal
with learning transition models and do not consider learning emission models. In this
paper, we want to extend this to learning all the local models of an iHMM.

We start with a short introduction of the relevant aspects of HMMs and iHMMs
in Section 2. In Section 3, we show how to learn imprecise local models—first if the
state sequence is supposed to be known, and finally for hidden state sequences. In Sec-
tion 4, we recall basic aspects of the Baum–Welch algorithm, relevant to our purpose.
In Section 5, we apply our method to a problem of predicting future earthquake rates.

2 Hidden Markov models and basic notions

2.1 Precise hidden Markov models

An HMM with length n has n state variables Xt that are hidden or unobservable, and
n observation variables Ot that are observable. The figure below shows a graphical
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representation of a HMM, with the local uncertainty model (characterised by a mass
function in the precise case) for each variable shown next to the corresponding node.

X1 X2

O1 O2

Xn

On

pX1
pX2|X1

pXn|Xn−1

pO1|X1 pO2|X2 pOn|Xn

Each state variable Xt , with t in {1, . . . ,n}, takes one of the m possible values in the
finite set Xt = X := {ξ1, . . . ,ξm}. Each observation variable Ot , with t in {1, . . . ,n},
takes one of the p possible values in the finite set Ot = O := {ω1, . . . ,ωp}. We denote
by xt a generic value that Xt takes in X , and by ot a generic value that Ot takes in O .

The local uncertainty model pXt |Xt−1 describes probabilistic knowledge about state
variable Xt , conditional on the previous state variable Xt−1, with t in {2, . . . ,n}, and is
called a precise transition model. The probability that state variable Xt takes value xt ,
conditional on Xt−1 = xt−1, is written as pXt |Xt−1(xt |xt−1).

The local uncertainty model pOt |Xt describes probabilistic knowledge about observa-
tion variable Ot , conditional on the corresponding state variable Xt , with t in {1, . . . ,n},
and is called a precise emission model. The probability that observation variable Ot
takes value ot , conditional on Xt = xt , is written as pOt |Xt (ot |xt).

The only variable we have not paid attention to so far is the first state variable X1.
The local uncertainty model pX1 describes probabilistic knowledge about the first state
variable X1, and is not conditional. It is called a precise marginal model. The probability
that state variable X1 = x1 is written as pX1(x1).

We write the state sequence as X1:n = x1:n and the observation sequence as O1:n =
o1:n. We use notations like Ap:n := (Ap, . . . ,An) if p ≤ n and Ap:n := /0 if p > n. For
notational convenience, we also use another way of denoting state and observation se-
quences. There is a unique l1:n ∈ ×n

i=1Xi such that the state sequence X1:n = x1:n can
be written as X1:n = (ξl1 , . . . ,ξln), and a unique h1:n ∈ ×n

i=1Oi such that the observation
sequence O1:n = o1:n can be written as O1:n = (ωh1 , . . . ,ωhn). We will use these unique
letters li and hi throughout.

We assume each HMM to be stationary, meaning that pOt |Xt = pO|X for all t in
{1, . . . ,n} and pXt |Xt−1 = pXi|Xi−1 for all t, i in {2, . . . ,n} . The probability pO|X(ωh|ξl),
with h in {1, . . . , p} and l in {1, . . . ,m}, of a state variable that takes value ξl emitting
value ωh is also denoted as Ehl . Furthermore, the probability pXt |Xt−1(ξh|ξl), with l,h
in {1, . . . ,m} (this probability does not depend on t since the HMM is stationary), of a
transition from a state variable taking value ξl to a state variable taking value ξh is also
denoted as Tlh. Finally, the probability pX1(ξl) that the first state variable X1 assumes
the value ξl is also denoted by pl .

The model parameter θθθ is the vector with all parameters of the marginal, transition
and emission models. It has m(p+m+1) elements, and is explicitly defined as:

θθθ :=
[
p1 · · · pm T11 · · · Tmm E11 · · · Epm

]
.

We write models that depend on (components of) θθθ as models conditional on θθθ .
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In our HMMs, we impose the usual Markov condition for Bayesian networks: for
any variable, conditional on its mother variable, the non-parent non-descendent vari-
ables are independent of it (and its descendants). Here, the Markov condition reduces
to the following conditional independence conditions. For each t in {1, . . . ,n}:

pXt |X1:t−1,O1:t−1(xt |x1:t−1,o1:t−1,θθθ) = pXt |Xt−1(xt |xt−1),

pOt |X1:n,O1:t−1,Ot+1:n(ot |x1:n,o1:t−1,ot+1:n,θθθ) = pOt |Xt (ot |xt).

2.2 Imprecise hidden Markov models

An iHMM has the same graphical structure as an HMM, with the precise-probabilistic
local models replaced by imprecise-probabilistic variants. Convenient imprecise prob-
ability models are coherent lower previsions.

A coherent lower prevision (or lower expectation functional) P is a real-valued func-
tional defined on real-valued functions—called gambles—of variables. We denote the
set of all gambles on the variable X by L (X ). A gamble is interpreted as an uncertain
award or penalty: it yields f (x) if X takes value x in X . A coherent lower prevision P
defined on L (X ) satisfies the following requirements:

C1. P( f )≥minx∈X f (x) for all f in L (X );
C2. P(µ f ) = µP( f ) for all real µ ≥ 0 and all f in L (X );
C3. P( f +g)≥ P( f )+P(g) for all f ,g in L (X ).

With a coherent lower prevision, we can associate a conjugate coherent upper previ-
sion P as follows: P( f ) := −P(− f ) for all gambles f . The interpretation of coherent
lower and upper previsions is as follows. P( f ) is a subject’s supremum buying price
for the gamble f , and consequently P( f ) is his infimum selling price for f . For more
information, see for instance [6].

The lower and upper probability of an event A ⊆X are defined as P(A) := P(IA)
and P(A) := P(IA), where IA is the indicator (gamble) of a set A, which assumes the
value 1 on A and 0 elsewhere.

We denote the imprecise marginal model by Q1, defined on L (X1). The impre-
cise transition model for state variable Xt , for t in {2, . . . ,n}, is denoted by Qt(·|Xt−1),
defined on L (Xt) and the imprecise emission model for observation variable Ot , for t
in {1, . . . ,n}, is denoted by St(·|Xt), defined on L (Ot). We assume our iHMM also to
be stationary, meaning that the local models do not depend on t.

In an iHMM, the Markov condition turns into the conditional irrelevance assess-
ment, meaning that, conditional on its mother variable, the non-parent non-descendant
variables are assumed to be epistemically irrelevant to the variable and her descendants
(see [3]). With this conditional irrelevance assessment, the following recursion relations
hold for the joint lower prevision Pt(·|Xt−1) on L (×n

i=t(Xi×Oi)):

Pt(·|Xt−1) = Qt(Et(·|Xt)|Xt−1) for t = n, . . . ,2,{
En(·|Xn) = Sn(·|Xn)

Et(·|Xt) = Pt(·|Xt−1)⊗St−1(·|Xt−1) for t = n−1, . . . ,1,
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The joint lower prevision P defined on L (×n
i=1(Xi×Oi)) of all the variables is given

by P f (·) = Q1(Et(·|Xt)).
In the next section, we start by presenting a method for learning the imprecise local

uncertainty models of an iHMM, if both the observation sequence and the state se-
quence is given. Since the state sequence is actually unobservable, in Section 3.3 we
present a method to estimate the relevant quantities from only an observation sequence.

3 Learning imprecise local uncertainty models

Since transitions between state variables and emissions of observation variables can be
seen as instances of IID processes, whose behaviour is usefully summarised by mul-
tinomial processes, a convenient model to describe uncertainty about transition and
emission probabilities are the conjugate Dirichlet models. One important imprecise-
probabilistic variant of these is the imprecise Dirichlet model (IDM) [7].

3.1 Imprecise Dirichlet model

Without going into too much detail, let us briefly recall the relevant ideas about the IDM.
If n(A) is the number of occurrences of an event A in N experiments, then the lower and
upper probability of A according to an IDM are defined as

P(A) =
n(A)
N + s

and P(A) =
n(A)+ s

N + s
,

where s is a hyperparameter called the number of pseudo-counts. This is a non-negative
real number on which the imprecision ∆(P(A)) := P(A)−P(A) = s/N+s depends. The
larger s, the more imprecise the inferences. If s = 0, the resulting precise model returns
the relative frequency P(A) = P(A) = n(A)/N of the occurrence of A.

Once we have chosen a value for s, we can use the IDM to infer interval estimates
for the probability of A from observations. The choice of s is, however, fairly arbitrary;
see also [7], where it is argued that for example s = 2 might be a good choice.

3.2 Known state sequence

Our aim is to learn local models, based on a known observation sequence O1:n =
(ωh1 , . . . ,ωhn). Assume for the time being the state sequence X1:n = x1:n = (ξl1 , . . . ,ξln)
to be also known, then we can build imprecise estimates for the local uncertainty models
as follows.

We first define for each i and g in {1, . . . ,m} the following numbers (or rather func-
tions of the state sequence x1:n) nξi and nξi,ξgas:

nξi(x1:n) :=
n

∑
t=1

I{ξi}(xt) and nξi,ξg(x1:n) :=
n

∑
t=2

I{(ξi,ξg)}(xt−1,xt).

The interpretation of these numbers is immediate: nξi is the number of times the value
ξi is reached in the whole state sequence x1:n and nξi,ξg is the number of times that a
state transition from value ξi to value ξg takes place in the whole state sequence x1:n.
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Imprecise transition model: The event of interest here is the transition from a state
variable taking value ξi in X to the subsequent state variable taking value ξg in X .
This event occurs nξi,ξg times. The number of “experiments” N is the number of times
∑

m
g=1 nξi,ξg that a transition from value ξi takes place. The IDM leads to the following

imprecise transition model (in terms of lower and upper transition probabilities):

Q({ξg}|ξi) =
nξi,ξg

s+∑
m
g=1 nξi,ξg

and Q({ξg}|ξi) =
s+nξi,ξg

s+∑
m
g=1 nξi,ξg

.

Since here and in what follows, the IDM produces a linear-vacuous model [6,7] for the
probabilities, these lower and upper probabilities determine the imprecise model.

Imprecise emission model: The event of interest here is the emission of observation
o in O from corresponding state variable taking value ξi in X . This event occurs
∑{t:ωht =o} I{ξi}(xt) times. The total number of times an emission from value ξi takes
place, is nξi . The IDM then leads to the following imprecise emission model:

S({o}|ξi) =
∑{t:ωht =o} I{ξi}(xt)

s+nξi

and S({o}|ξi) =
s+∑{t:ωht =o} I{ξi}(xt)

s+nξi

.

Imprecise marginal model: The event of interest here is the state variable X1 taking
value ξi in X . The number of times this event occurs is I{ξi}(x1). The total number
of times state variable X1 takes any value is of course 1. The IDM then leads to the
following imprecise marginal model:

Q1({ξi}) =
I{ξi}(x1)

s+1
and Q1({ξi}) =

s+ I{ξi}(x1)

s+1
.

3.3 Unknown state sequence

Since in an HMM the state sequence X1:n is unobservable (hidden), the numbers nξi
and nξi,ξg are actually random variables Nξi and Nξi,ξg : functions of the hidden state
sequence X1:n. This means we can no longer use them directly to learn the imprecise
local models. Instead of using these random variables Nξi and Nξi,ξg , we will rather
use their expected values, conditional on the known observation sequence o1:n and the
model parameter θθθ

∗. Here θθθ
∗ is a local maximum of the likelihood, obtained by the

Baum–Welch algorithm (see Section 4). We define the expected counts n̂ξi an n̂ξi,ξg as

n̂ξi
:= E

(
Nξi

∣∣o1:n,θθθ
∗)= n

∑
t=1

E
(
I{ξi}(xt)

∣∣o1:n,θθθ
∗)= n

∑
t=1

pXt |O1:n(ξi|o1:n,θθθ
∗)

n̂ξi,ξg
:= E

(
Nξi,ξg

∣∣∣o1:n,θθθ
∗
)
=

n

∑
t=2

E
(
I{(ξi,ξg)}(xt−1,xt)

∣∣∣o1:n,θθθ
∗
)

=
n

∑
t=2

pXt−1:t |O1:n(ξi,ξg|o1:n,θθθ
∗).
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We can calculate θθθ
∗, and from this pXt |O1:n(ξi|o1:n,θθθ

∗) and pXt−1:t |O1:n(ξi,ξg|o1:n,θθθ
∗),

efficiently with the Baum–Welch algorithm and forward and backward probabilities.
Instead of using real counts of transitions and emissions, we use the expected number
of occurrences of these events to build the imprecise local models. These expected
numbers of occurrences are non-negative real numbers instead of non-negative integers.
The estimated imprecise transition model is given by

Q({ξg}|ξi) =
n̂ξi,ξg

s+∑
m
g=1 n̂ξi,ξg

and Q({ξg}|ξi) =
s+ n̂ξi,ξg

s+∑
m
g=1 n̂ξi,ξg

,

the estimated imprecise emission model by

S({o}|ξi) =
∑{t:ωht =o} pXt |O1:n(ξi|o1:n,θθθ

∗)

s+nξi

and S({o}|ξi) =
s+∑{t:ωht =o} pXt |O1:n(ξi|o1:n,θθθ

∗)

s+nξi

,

and the estimated imprecise marginal model by

Q1({ξi}) =
pX1|O1:n(ξi|o1:n,θθθ

∗)

s+1
and Q1({ξi}) =

s+ pX1|O1:n(ξi|o1:n,θθθ
∗)

s+1
.

3.4 Imprecision of the imprecise local uncertainty models

The imprecision ∆(Q({ξh}|ξi)) of the imprecise transition model and the imprecision
∆(S({o}|ξi)) of the imprecise emission model satisfy interesting properties.

Proposition 1. The harmonic mean H∆(Q) of the set {∆(Q({ξh}|ξi)) : i ∈ {1, . . . ,m}}
is given by H∆(Q) = ms/ms+n−1 and the harmonic mean H∆(S) of the set {∆(S({o}|ξi)) :
i ∈ {1, . . . ,m}} is given by H∆(S) = ms/ms+n.

Proof. The harmonic mean H∆(Q) of {∆(Q({ξh}|ξi)) : i ∈ {1, . . . ,m}} is given by

H∆(Q) =
m

∑
m
i=1

1
∆(Q({ξh}|ξi))

=
ms

∑
m
i=1

(
s+∑

m
g=1 n̂ξi,ξg

)
=

ms
ms+∑

n−1
t=1 ∑

m
i=1 E

(
I{ξi}(Xt)

∣∣o1:n,θθθ
∗) = ms

ms+∑
n−1
t=1 1

=
ms

ms+n−1
.

The harmonic mean H∆(S) of {∆(S({o}|ξi)) : i ∈ {1, . . . ,m}} is given by

H∆(S) =
m

∑
m
i=1

1
∆(S({o}|ξi))

=
ms

∑
m
i=1
(
s+nξi

) = ms
ms+n

. ut

H∆(Q) increases with m (if n > 1) and decreases with n, and H∆(S) increases with m
and decreases with n. The IDM yields more precise estimates as the number of relevant
observations (of transitions or emissions) increases: the more relevant data, the more
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precise the estimates. For a fixed number of data (observation sequence length n), the
precision tends to decrease as the number of possible state values m increases. Notably
in cases where states are useful fictions (as in the earthquake example discussed further
on), there is a cost to increasing the number of states. The increase of the imprecision
with increasing m is, obviously, not present in precise HMM estimation. When making
inferences based on precise HMM estimation, for example using the Viterbi algorithm
for state sequence estimation, all results seem equally reliable, regardless of the number
of possible state values m. But when making inferences in iHMMs, based on the model
estimates provided by our method, for example using the EstiHMM algorithm [2], this
is not the case: for smaller m, inferences will be more precise (or decisive); and if m
is fairly large, inferences about state sequences will tend to become more imprecise.
Lumping states together will increase the predictive power (for a given observation
sequence), refining states will reduce it: there is a certain limit on what can be inferred
using an iHMM estimated from a given information sequence, which is not there if we
use a precise HMM estimation. Using precise HMM estimation, the coarseness of the
state space representation has no influence on the precision, irrespective of the amount
of data available. We believe this is a weakness rather than a strength of precise models.

4 The Baum–Welch algorithm

We give a brief overview of how to find the model parameter θθθ
∗ using the Baum–

Welch algorithm. It is an EM algorithm specifically for learning HMMs (see, e.g., [9]).
It iteratively finds a (local) maximum θθθ

∗ of the likelihood, which we define presently.

4.1 Likelihood in hidden Markov models

The complete likelihood Lo1:n,x1:n(θθθ) in an HMM, with the observation sequence O1:n =
o1:n as data, an arbitrary state sequence X1:n = x1:n and model parameter θθθ , is defined
as pO1:n,X1:n(o1:n,x1:n|θθθ). By the Markov condition, this can be written as Lo1:n,x1:n(θθθ) =
pl1 ∏

n
t=2 Tlt−1lt ∏

n
t=1 Eht lt . Although we are interested in the likelihood for the observa-

tion sequence Lo1:n(θθθ) := pO1:n(o1:n|θθθ), the Baum–Welch algorithm finds a maximum
θθθ
∗ for the complete likelihood. Welch proves [8] that the Baum–Welch algorithm also

locally maximises the likelihood for the observations.
A θθθ

∗ that maximises Lo1:n,x1:n(θθθ) also maximises lnLo1:n,x1:n(θθθ), given by:

lnLo1:n,x1:n(θθθ) =
m

∑
z=1

Iξz(x1) ln pz +
m

∑
i=1

m

∑
g=1

nξi,ξg lnTig +
n

∑
t=1

m

∑
zt=1

Iξzt
(xt) lnEht zt . (1)

The Baum–Welch algorithm consists in executing two steps—the Expectation (E) step
and the Maximisation (M) step—iteratively until some convergence is achieved.

4.2 Expectation step

In the E step we calculate the expectation of the complete log-likelihood conditional
on the observations o1:n (and of course the model parameter θθθ ). We call this expecation
ln L̂o1:n(θθθ) := E (lnLo1:n,X1:n(θθθ)|o1:n,θθθ). It is given by the right-hand side of (1), but with
the indicators and the nξi,ξg replaced by their expectations, as in Section 3.3.
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4.3 Maximisation step

In this step we search the argument θθθ
∗ that maximises the expectation of the complete

log-likelihood.

Lemma 1. The argument θθθ
∗ that maximises the expected complete log-likelihood of

a HMM with observation sequence ωh1:hn is given by, for all i,g ∈ {1, . . . ,m} and all
h ∈ {1 . . . , p}:

p∗i = pX1|O1:n(ξi|o1:n,θθθ
∗),T ∗ig =

n̂ξi,ξg

∑
m
g=1 n̂ξi,ξg

, and E∗hi =
∑{t:ht=h} pXt |O1:n(ξi|o1:n,θθθ

∗)

n̂ξi

.

By repeatedly performing the E step followed by the M step (with in the E step θθθ

taken as θθθ
∗), we eventually reach a stable value of θθθ

∗, guaranteed to be also a local
maximum of the likelihood for the observation sequence.

Incidentally, Lemma 1 guarantees that our method, with the choice for the pseudo-
counts s = 0, gives local models that maximise the likelihood for the observation se-
quence.

5 Predicting the Earth’s earthquake rate

5.1 Introduction

We apply our method to a problem where we are interested in using HMMs to predict
earthquake rates in future years. To do this, we will see that we need to learn a transition
model. To this end, we use data of counted annual numbers of major earthquakes (with
magnitude 7 and higher).

We assume that the earth can be in m different seismic states λ1, . . . ,λm and that
the occurrence of earthquakes in a year depends on the seismic state λ of the Earth
in that year. We assume that the Earth, being in a seismic state λ , “emits” a number
of earthquakes o governed by a Poisson distribution with parameter λ : pO|X(o|λ ) =
e−λ λ o/o!.

The data are (yearly) earthquake counts over 107 subsequent years, from 1900 to
2006. It is freely available on http://neic.usgs.gov/neis/eqlists.

We model this problem as an iHMM of length 107, in which each observation vari-
able Oi corresponds to one of the 107 yearly earthquake counts. The states correspond
to the seismic states Earth can be in. The set of seismic states {λ1, . . . ,λm} defines the
possibility space X of the state variables in the HMM.

5.2 Results

Imprecise transition model Since there is only 107 years of data, we believe that a
precise local transition model is not justified, so we decided to try an imprecise estima-
tion for the transition model. The emission model is kept precise for simplicity, due to
its relation to a Poisson process.

To show how the imprecision changes with changing number of possible state val-
ues m, we plot the learned transition model for varying m. The figure below shows, as a

http://neic.usgs.gov/neis/eqlists
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function of m (ranging from 3 to 10), the imprecision ∆(Q({λ·}|λ1)), . . . , ∆(Q({λ·}|λm))
of the transition probabilities of going from state λi to state λ·, for s = 2 (this impreci-
sion depends on the state λi, but not on the state λ· the transition goes to).

m

∆(Q({λ·}|λi))

3 4 5 6 7 8 9 10
0

0.5 imprecision ∆(Q({λ·}|λi)) with i in {1, . . . ,m}
harmonic mean of the imprecisions

The harmonic mean of the imprecisions increases with m, as predicted by Proposition 1.

Predicting the earthquake rate With the learned transition model (with m = 3), we
make predictions of the earthquake rate in future years. We do this in order to valid-
ate our learned model. We want to make inferences about the years 2007, 2016, 2026
and 2036: we are interested in the model describing the state variables of these years,
updated using the observation sequence. We can use this updated model to get some
idea of the future earthquake rate. To perform such updating, we can use the MePiCTIr
algorithm [3].

The figure below shows conservative approximations (the smallest hexagons with
vertices parallel with the borders of the simplex) of such updated models describing
future state variables. In the dark grey credal sets, we have used the transition model
estimates for s = 2, and in the light grey ones the estimated transition models for s = 5.

λ2

λ1λ3 2007 2016 2026 2036

The precision of the inferences decreases as we move forward in time. For 2007, we
can be fairly confident that the local seismic rate of the earth will be close to λ1, while
for 2036, we can only make very imprecise inferences about the seismic rate. This is a
property that predictions with precise HMMs do not have.

6 Conclusion

We have presented a new method for learning imprecise local uncertainty models in
stationary hidden Markov models. In contradistinction with the classical EM learning
algorithm, our approach allows the local models to be imprecise, which is useful if there
is insufficient data to warrant precision. We have studied some of the properties of our
learned local models, especially with respect to their imprecision.
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We conclude by proposing some avenues for further research. We have based the
present discussion on the maximum likelihood approach of learning in Bayesian net-
works. The epistemic nature of imprecise probability theory however suggests that a
Bayesian learning approach would be more appropriate, and we intend to investigate
this in the near future.
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