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Abstract

The selection of prior distributions is a problem that has been heavily

discussed since Bayes and Price published their paper in 1763. Conjugate

priors became popular, largely because of their mathematical convenience.

In this study, we justify the use of the conjugate combination of a Dirich-

let prior and a multinomial likelihood by imposing a fundamental principle

that we call partition invariance, alongside other requirements that are well

known in the literature.

keywords: predictive inference, partition invariance, Johnson’s sufficient-

ness postulate, conjugate prior

1 Introduction

To perform Bayesian inference, the traditional first steps consist of selecting a

statistical model—from which the likelihood is derived—and a prior probability

distribution for the unknown parameters of this model.
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Since Bayes and Price (1763) published their essay, the matter of the selec-

tion of the prior has received considerable attention. Two major points of view

emerged, and the debate continues. Subjectivists argue that a prior is a purely sub-

jective assessment that should be elicited from experts (Savage 1954, O’Hagan et

al. 2006), whereas objectivists argue for the use of a unique objective prior, that

can be obtained by imposing strict rules that follow from the selected statistical

model or from logical principles (Kass and Wasserman 1996, Berger, Bernardo

and Sun 2009).

A third perspective is called the logical approach, which can be regarded as

a compromise between the two approaches presented above. As in the objective

approach, the idea is to impose structural criteria. However, these criteria are

typically less restrictive than those used by objectivists and thus do not lead to

a unique prior, but to a fairly broad—and often parameterized—class of priors.

From a subjective perspective, this class can then be regarded as a set of candidate

priors, among which a single prior can be selected subjectively. Alternatively,

an objective prior can be selected from within this set. See (Carnap 1952) and

(Jaynes 2003) for more information on the logical approach.

Our perspective can be regarded as a generalization of the third approach.

However, instead of focusing only on the selection of the prior, we regard the

selection of the statistical model as part of the problem. The main idea is to re-

duce the class of all probabilistic models—combinations of statistical models and

priors—available to select from by requiring that the induced predictive distribu-

tion satisfies certain principles. Additionally, we do not assume that the predictive

distribution results from the conjunction of a statistical model and a prior; we infer

this fact from basic principles.
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In this paper, we develop such an approach for a generalized version of the

problem posed by Bayes and Price (1763), also referred to as the fundamental

problem of practical statistics by Karl Pearson (1920): in a binary experiment,

given that we have observed k successes in the first n trials, what is the probability

that the next trial will be a success?1 This question is easily generalized to the

non-binary case and to any (finite) number of future trials.

To reduce the class of priors and statistical models for this problem, we require

predictive distributions to fulfill philosophical (or practical) principles. Exchange-

ability and coherence are well known and widely discussed in the literature; see

(Good 1965), (Zabell 2005), (Jaynes 2003), (Robert 2007) and references therein.

The open-mindedness condition and learning from experience are considered rea-

sonable properties of a predictive distribution as well; see (Skyrms 1996), (Car-

nap 1952) and (Carnap and Stegmüller 1959). We combine these properties with

an additional requirement, which we call the partition invariance principle. This

principle is closely related to W. E. Johnson’s sufficientness postulate, also called

predictive sufficiency. Eventually, we prove that when a subject is studying a phe-

nomenon for which those principles are considered necessary, and decides that his

predictive distribution should reflect these principles, then his predictive distribu-

tion should be derived from the multinomial likelihood and a prior on the param-

eter space that is Dirichlet. In this way, we justify the use of this conjugate—and

thus tractable and mathematically convenient—combination, based on fundamen-

tal principles.

1This problem is closely related to the problem of induction: how to justify inductive inference

from the observed to the unobserved. This problem was posed by Hume (1888) and concerns the

justification of inductive methods, i.e., methods that assume that “instances of which we have had

no experience resemble those of which we have had experience”.
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This paper is organized as follows. Section 2 starts from a prior and a multino-

mial likelihood, and shows how they induce a predictive distribution. In Section 3,

we reverse the process. We start from a predictive distribution and, by requiring

it to satisfy certain principles, show that this predictive distribution is induced

by a prior and a multinomial likelihood. In the non-binary case, we justify the

use of Dirichlet priors by additionally imposing Johnson’s sufficientness postu-

late. Then, in Section 4, we define the partition invariance principle and show

that if a predictive distribution system—a map from sample spaces to predictive

distributions—satisfies this principle, then each of the predictive distributions of

which it consists satisfies Johnson’s sufficientness postulate. Ultimately, this re-

sult allows us to justify the use of Dirichlet priors, even in the binary case. We

close with some remarks and directions for future research.

2 From priors to predictions

As noted in the introduction, we consider a generalized version of the fundamental

problem of statistics. Formally, this problem is concerned with an experiment that

can be repeated indefinitely and for which the outcome that is realized in every

repetition takes values in some finite category set X . We use ei ∈X to denote

the outcome of experiment i. The goal is to determine a predictive distribution.

Definition 1. A predictive distribution PX gives, for any finite initial sequence of

realized experiments {Xi = ei}n
i=1, a probability for any future event—any logical

proposition based on a finite number of future experiments.

Example 1 (running example). Consider a binary category set X = {0,1}. If the

first experiment resulted in e1 = 1, then a predictive distribution PX could for
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example predict that PX (X2 = 0 | e1) = 1/3 and PX (X2 = X3 | e1) = 2/3. ♦

For X = {0,1} = {‘failure’, ‘success’}, the—by now well-known—solution

proposed by Bayes and Price (1763) was to consider a (potentially) infinite se-

quence of binary random quantities that are assumed to be conditionally indepen-

dent and identically distributed given θ , the probability of success. Assuming a

prior for θ , with distribution function Π(θ), the probability of any given sequence

(X1 = e1, . . . ,Xn = en) ∈ {0,1}n, in which k out of n trials are successful, is then

given by ∫ 1

0
θ

k(1−θ)n−kdΠ(θ) = : PX (X1 = e1, . . . ,Xn = en), (1)

also known as the marginal distribution of the data (Robert 2007), the prior predic-

tive distribution (Schervish 1995), or the marginal predictive distribution. Bayes

and Price used a uniform prior, but—as we now all know—the same approach

also works with other priors.

Running example. When the prior for θ is taken as a beta distribution with hyper-

parameters α > 0 and β > 0, and when k successes occur in n experiments, it can

be shown that

PX (X1 = e1, . . . ,Xn = en) =
Γ(α +β )Γ(k+α)Γ(n− k+β )

Γ(α)Γ(β )Γ(n+α +β )
, (2)

which is known as the beta-binomial or Polya distribution. In the special case of

the uniform prior with α = β = 1, we find—for example—that: PX (X1 = 1) = 1/2

and PX (X1 = 1,X2 = 0) = 1/6. ♦

This method for constructing a marginal predictive distribution is easily general-

ized to the multinomial case.

Notably, Definition 1 also covers the case of a null initial sequence of experi-

ments, implying that the marginal predictive distribution is a part of PX . When at
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least one experiment is realized, the predictive distribution produces conditional

probabilities similar to those in example 1. These conditional probabilities are

often called conditional or posterior predictive probabilities (Bernardo and Smith

1994, Schervish 1995). We will refer to these probabilities as conditional pre-

dictive probabilities and will refer to the part of the predictive distribution that

provides them as the conditional predictive distribution. In this way, the predic-

tive distribution consists of two parts: the marginal predictive distribution and the

conditional predictive distribution.

With this terminology in place, we can continue to develop a predictive distri-

bution. Equation (1) already provides us with the marginal part. The next step is

to use this marginal predictive distribution to derive the conditional part of the pre-

dictive distribution. The traditional approach is to apply Bayes’s rule. However,

in order to be able to do so, we must impose the following condition. Loosely

speaking, it requires that any finite sequence of experiments is not considered

impossible.

Definition 2. A predictive distribution is said to be open-minded when, accord-

ing to the corresponding marginal predictive distribution, every finite sequence of

experiments has a probability (strictly) greater than zero:

PX (X1 = e1, . . . ,Xn = en)> 0 for all n < ∞ and (e1, . . . ,en) ∈X n. (3)

See for example (Skyrms 1996). The same condition was referred to as regularity

by Carnap (1952)—see (Carnap and Stegmüller 1959) as well—and also became

known as Cromwell’s rule after Lindley (1991).2

2In 1650, Cromwell, trying to convince the General Assembly of the Church of Scotland that

their support for Charles II was misguided, said: “I beseech you, in the bowels of Christ, think
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If we accept the open-mindedness condition, then providing a marginal pre-

dictive distribution is equivalent to providing a predictive distribution because,

using Bayes’s rule, all conditional predictive probabilities can be computed with-

out worrying about probability zero and, together with the marginal predictive

distribution, these conditional probabilities constitute the predictive distribution

of Definition 1.

In some cases, it will be useful to focus on the ‘immediate’ part of the predic-

tive distribution. This immediate predictive distribution consists of the immediate

marginal predictive probabilities PX (X1 = e1) and immediate conditional predic-

tive probabilities PX (Xn+1 = en+1 | {Xi = ei}n
i=1). Using the rules of probability

calculus, the predictive distribution PX can be derived from its immediate part.

Consequently, there is a one-to-one correspondence between predictive distribu-

tions and immediate predictive distributions.

Running example. In our example, with X = {0,1} and a beta prior with hyper-

parameters α = β = 1, and for e1 = 1, we find that

PX (X2 = 0 | e1) =
PX (X1 = 1,X2 = 0)

PX (X1 = 1)
=

1/6

1/2
=

1
3
.

More generally, for any α > 0 and β > 0, computing the conditional predictive

probabilities is non-problematic because the open-mindedness condition is clearly

satisfied. For example, when h out of m future trials are successful, we find that

PX (Xn+1 = en+1, . . . ,Xn+m = en+m | {Xi = ei}n
i=1) =

(α + k)(h)(n− k+β )(m−h)

(n+α +β )(m)
,

(4)

where (α +k)(h) = (α +k)(α +k+1) . . .(α +k+h−1) is the rising factorial. In

the particular case of the uniform prior with α = β = 1 and for m = h = 1, we

it possible you may be mistaken.” Lindley used this saying to illustrate the principle that no

proposition, however implausible, should be assigned zero probability.
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find that

PX (Xn+1 = 1 | {Xi = ei}n
i=1) = (k+1)/(n+2),

which corresponds to what is perhaps the most famous immediate predictive dis-

tribution: Laplace’s rule of succession. ♦

Laplace employed the approach described above, using uniform priors, to

solve many practical problems. His justification for using the uniform prior is

currently called the principle of indifference, also referred to as the Bayes-Laplace

postulate, which is a basic symmetry argument.

As time progressed, other priors started being used and, in principle, one could

use any possible distribution as a prior. Therefore, the obvious question—and by

now arguably the most important question in Bayesian statistics—is how to select

a prior.

One of the first criteria on which this selection was based was mathematical

convenience. This criterion lead to the concept of conjugate priors, the use of

which was disseminated by Raiffa and Schlaifer (1961) and, for the exponential

family, justified on mathematical grounds by Diaconis and Ylvisaker (1979). The

beta/Dirichlet prior is the conjugate prior for the binomial/multinomial likelihood.

Since Good (1965), mixtures (convex combinations) of Dirichlets also became

popular because they allow for a broader range of assessments and because they

are relatively easy to compute with thanks to the conjugacy property.

As computational power increased, tractability became less of an issue, and

Bayesian inference started to be applied in many fields. The question of how to

select a prior, once again, received considerable attention.

Two main approaches emerged; see (Robert 2007, chap. 3) for an overview.

Subjectivists argue that a prior must reflect scientific knowledge of experts and,
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as such, should be obtained through elicitation. See (O’Hagan et al. 2006) and

(Seaman III et al. 2012); (Bedrick et al. 1996) provides a good example of the

application of such an approach. In contrast, objectivists derive a prior by requir-

ing that it satisfies some structural criterion; Kass and Wasserman (1996) pro-

vide a nice overview. Well-known examples are reference priors (Bernardo 1979

and Berger, Bernardo and Sun 2009) and approaches based on maximum entropy

(Jaynes 2003) or invariance to reparameterizations (Jeffreys 1961).

We do not wish to enter this discussion here. Instead, as noted in the intro-

duction, we will follow an approach that is similar to the logical one, as founded

by the philosophers W. E. Johnson (1924) and Rudolf Carnap (1952); see Keynes

(1921) and Jaynes (2003) as well. This approach did not become popular among

statisticians, and is more known among science philosophers. The idea is to take

a step back from the discussion and to argue for a broad—often parameterized—

class of priors by imposing philosophical principles. In our case, this class of

priors will be the conjugate class of Dirichlet priors. We do not discuss how to

select a single prior from this class of Dirichlet priors. Subjective or objective

arguments could be used for that purpose.

3 From predictions to priors

As explained in the previous section, a predictive distribution can be derived from

a prior by combining the prior with a multinomial likelihood and applying Bayes’s

rule. We will now justify this approach by starting from a predictive distribution

and showing that, when we require this predictive distribution to satisfy certain

properties, there must indeed be a prior that induces it in this way. Eventually, by

imposing additional principles, we will justify the use of Dirichlet priors.
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A first important property is that of coherence, as defined by de Finetti (1937).

An assessment of probabilities, interpreted as betting rates, is called coherent

when a Dutch book—a combination of bets such that the person will always lose

money—against a person who holds those assessments cannot be formed. It can

be shown that a set of probability assessments is coherent if and only if it satisfies

the usual axioms of probability calculus, including finite—but not countable—

additivity and Bayes’s rule (de Finetti 1937, Bernardo and Smith 1994).

The second property that we impose on a predictive distribution is open-

mindedness, as defined in the previous section. A coherent predictive distribution

that is also open-minded has been called strictly coherent, by Carnap (1952). An

important feature of open-minded coherent predictive distributions is that they are

completely determined by their marginal predictive distribution through Bayes’s

rule.

De Finetti (1937) also argued for the use of the third property that we impose:

exchangeability. An infinite sequence of random quantities is called exchangeable

when, for every finite subsequence, all permutations are considered equally prob-

able. In other words, when a researcher considers a potentially infinite sequence

of random quantities to be exchangeable, this means that he or she thinks that the

order of the results in any given sample is irrelevant.

Running example. The predictive distribution that corresponds to the beta prior—

see Equation (4)—is open-minded, coherent and exchangeable. Open-mindedness

and coherence are obvious. For exchangeability, we look at the marginal predic-

tive distribution (which, by coherence and open-mindedness, fully determines the

predictive distribution)—see Equation (2). Clearly, this marginal predictive dis-

tribution does not depend on the sample order. ♦
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Exchangeability plays a central role in relating coherent marginal predictive

distributions to priors. The key to this relationship was demonstrated by de Finetti

(1928, 1937) for (potentially) infinite sequences of binary random quantities con-

sidered to be exchangeable. His result can be extended to sequences of random

quantities that assume values in any finite set, such as X = {0,1, . . . ,r− 1}. In

this generalized case, de Finetti’s result states that when the marginal predictive

distribution is coherent and exchangeable, there exist a random vector Θ that as-

sumes values in the open standard (r−1)-simplex

∆r :=
{

θ = (θ1, . . . ,θr−1) ∈ Rr−1 :
r−1

∑
i=1

θi < 1 and (∀i ∈ {1, . . . ,r−1}) θi > 0
}

with a unique distribution function Π(θ), such that

PX (Sn = k) =
∫

∆r

(
n

k1, . . . ,kr−1

)
θ

k1
1 θ

k2
2 . . .(1−

r−1

∑
i=1

θi)
n−∑

r−1
i=1 kidΠ(θ),

where Sn is the count vector that contains the number of times each category

j = 1,2, . . . ,r−1 was observed in n ∈ N trials and, therefore:

k ∈
{
(k1, . . . ,kr−1) ∈ Nr−1 :

r−1

∑
i=1

ki ≤ n
}
.

Since, for any given sequence (X1 = e1, . . . ,Xn = en) ∈X n that has k j instances

of type j, for j ∈ {1, . . . ,r−1}, exchangeability and coherence imply that

PX (Sn = k) =
(

n
k1, . . . ,kr−1

)
PX (X1 = e1, . . . ,Xn = en),

we find that

PX (X1 = e1, . . . ,Xn = en) =
∫

∆r

θ
k1
1 θ

k2
2 . . .(1−

r−1

∑
i=1

θi)
n−∑

r−1
i=1 kidΠ(θ);

Equation (1) corresponds to the special case in which X is binary, with k = k1.

Conversely, when your probability assessments can be written as a convex mix-

ture of multinomial likelihoods, it is easy to show that they are exchangeable and
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coherent. This one-to-one correspondence is de Finetti’s famous Representation

Theorem.

Running example. When X = {0,1} is binary, Sn is a scalar that represents the

counts of category “1” in n trials. The uniform distribution of Sn on the counts,

PX (Sn = k) = 1/(n+ 1) for k = 0, . . . ,n, is exchangeable and coherent and is

implied by the uniform distribution on (0,1)—the beta prior with α = β = 1—

only; see (De Finetti 1928). Murray (1930) provides an alternative demonstration;

see also (Geisser 1984). Similarly, the Polya distribution—see Equation (2)—can

only be derived from the beta prior (Feller 1968, vol. II, p.229-230). ♦

By combining de Finetti’s theorem with our assumption of open-mindedness,

we obtain a one-to-one correspondence between predictive distributions and pri-

ors. The following theorem rephrases this result for future reference.

Theorem 1. Every open-minded coherent exchangeable predictive distribution

has a unique distribution function on the parameter space (a prior) from which it

can be derived through the multinomial likelihood and Bayes’s rule.

By now, we have already justified the approach of combining a prior with a

multinomial likelihood to obtain a predictive distribution. The next step is to re-

duce the set of possible priors by requiring the predictive distribution to satisfy

additional principles, in addition to coherence, open-mindedness and exchange-

ability. This strategy was adopted by W. E. Johnson (1932) when he introduced the

notion of predictive sufficiency, later called the sufficientness postulate by Good

(1965). Together with exchangeability, Johnson used this postulate to justify the

use of symmetric Dirichlet priors. We discuss Zabell’s (2005, chap. 4) extension

of Johnson’s original approach, which moves beyond the symmetric case.
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Definition 3. Let PX be a coherent predictive distribution for random quantities

assuming values in a finite category set X . Then PX is said to satisfy Johnson’s

sufficientness postulate if the immediate conditional predictive distribution is of

the following form:

PX (Xn+1 = j | X1 = e1, . . . ,Xn = en) = f j(k j,n), (5)

where k j is the number of times the outcome j was observed and ∑ j∈X k j = n.

In other words: the conditional probability that the next trial is of type j de-

pends only on this type j, on the total number of observations, and on the number

of times j was observed. The frequencies of other categories, or the specific trials

in which category j appears, are not considered relevant.

Example 2. Let X = {0,1, . . . , j, . . . ,r−1} and consider a Dirichlet prior with hy-

perparameters (α0, . . . ,α j, . . . ,αr−1). The corresponding immediate conditional

predictive distribution is then given by

PX (Xn+1 = j | X1 = e1, . . . ,Xn = en) =
k j +α j

n+α
= : f j(k j,n),

which clearly satisfies Johnson’s sufficientness postulate. ♦

If |X |> 2, then any coherent predictive distribution that satisfies Equation (5)

will be linear in k j (Zabell 2005):

PX (Xn+1 = j | X1 = e1, . . . ,Xn = en) = a j(n)+b(n)k j. (6)

Furthermore, if an open-minded coherent predictive distribution is induced by a

prior and the multinomial likelihood (if it is exchangeable), then Equation (6)

implies that the prior on the parameter space is a Dirichlet or, when the random

quantities are independent, a degenerate distribution (Zabell 2005).
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The independent case is not particularly appealing in the context of predictive

inference, in which the goal is to use past experience to provide useful information

about future experiments of the same type. Indeed, when we assume that the

experiments are i.i.d. with an ‘unknown but fixed probability’ p j of resulting in

category j, the predictive distribution will always provide p j as its immediate

conditional prediction for the probability of category j, thereby discarding the

outcomes of previous trials. To avoid this behavior, we require that a predictive

distribution allows a subject to learn from experience.

Definition 4. A predictive distribution is said to allow a subject to learn from

experience if the observed data may provide relevant information about future

experiments, i.e., there are n ∈ N, (e1, . . . ,en) ∈X n and j ∈X such that

PX (Xn+1 = j|X1 = e1, . . . ,Xn = en) 6= PX (Xn+1 = j).

From a practical point of view, learning from experience is clearly a useful prop-

erty, which is why we suggest imposing this constraint on predictive distributions.

Because learning from experience implies that the experiments cannot be inde-

pendent, the discussions in this section lead us to the following result.

Proposition 2. If a subject accepts the open-mindedness condition (Definition

2) and has a coherent exchangeable predictive distribution PX , with |X | > 2,

that satisfies Johnson’s sufficientness postulate (Definition 3) and allows learning

from experience (Definition 4), the prior on the parameter space is a Dirichlet,

from which the predictive distribution can be derived by combining the prior with

the multinomial likelihood and applying Bayes’s rule.

This result is remarkable: by imposing simple principles on a predictive distri-

bution, and without any other assumptions, we find that this predictive distribution
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is induced by a Dirichlet prior and the multinomial likelihood. Using a prior that is

not a Dirichlet ensures that at least one of the imposed principles fails. However,

the result only holds when |X |> 2. In the binary case, linearity—Equation (6)—

must be added as an assumption because it is no longer implied by Johnson’s

sufficientness postulate. This assumption weakens the result because linearity,

unlike Johnson’s sufficientness postulate, is not a philosophical principle.

4 From prediction systems to a family of priors

Because of de Finetti’s representation theorem, solving the fundamental problem

of practical statistics and its generalization to the non-binary case appears to have

been reduced to selecting a prior. However, this is not entirely true. Before fixing

a prior, the categories must be selected according to which the outcome of a single

experiment will be classified. In other words, one has to partition what we will call

the possibility space Ω, which is a set that contains all the possible outcomes of

the experiment one could envision. Partitioning this possibility space corresponds

to choosing a sample space X , which is a set that contains the labels according to

which the outcomes will be classified. In practice, the sample space will typically

be finite, even when the possibility space is not.

Example 3. Suppose we are measuring the height of people, in meters. A rea-

sonable possibility space for such an experiment would be Ω = (0,3],3 which is

infinite. However, because of the inherent limited accuracy of measurement meth-

ods (common measuring tools will show the height up to the closest 1 millimeter),

the sample space X will be a finite partition of (0,3]. ♦

3Because the current Guinness Book World Record is 2.72 m.
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Choosing a sample space—partitioning the possibility space—is often regarded

as trivial. The most common approach is to base this choice either on the available

data or on the particular inference problem at hand. However, in principle, there

is no reason to do so, and one has to keep in mind that the choice of a partition

can influence the resulting predictions. The following example illustrates this.

Example 4. Consider a disease from which both females (F) and males (M) can

suffer and for which a treatment is available that may cure (C) or not cure (C) the

patient. Hence, X = {CM,CF,CM,CF} would be an obvious choice of sample

space. The probabilities of the elements of X are designated by θ := (θ1, . . . ,θ4),

which takes values in the standard open 3-simplex. Two physicians, working

in different countries, each provide their prior opinion about θ in the form of a

Dirichlet distribution. Their respective hyperparameters are α = (9,1,1,1) and

β = (1,1,1,9).

In a third country, a study tested the effect of the treatment on eight peo-

ple affected by the disease. Amongst them, three men and one woman were

cured and three men and one woman were not cured. We denote this dataset

by D = (3,1,3,1). Table 1 provides immediate conditional (one step ahead) pre-

dictions for the next patient. Three different priors are considered: Dir(α), Dir(β )

and a mixture that assigns equal weight to both.

CM CF CM CF C C

Dir(α) 3/5 1/10 1/5 1/10 7/10 3/10

Dir(β ) 1/5 1/10 1/5 1/2 3/10 7/10

1/2(Dir(α)+Dir(β )) 37/72 1/8 5/24 11/72 23/36 13/36

Table 1: Immediate conditional predictions using the original data and priors
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Consider now a situation in which no data are available about the sex of

the previous patients, but only about whether or not they were cured. In that

case, a natural way to proceed is to pool the original categories together and

use Y := {C,C} as the sample space. In this new sample space, the dataset

is D′ = (4,4), and the priors are obtained by marginalizing the original priors:

Dir(α ′), with α ′= (10,2), Dir(β ′), with β ′= (2,10), and the mixture that assigns

equal weight to both. Table 2 provides the corresponding immediate conditional

predictions for the next patient.

C C

Dir(α ′) 7/10 3/10

Dir(β ′) 3/10 7/10

1/2(Dir(α ′)+Dir(β ′)) 1/2 1/2

Table 2: Immediate conditional predictions using the pooled data and priors

Suppose now that we are interested in the probability that the next patient

will be cured, regardless of his or her sex, or equivalently, in the posterior ex-

pected value of θC := θ1 +θ2. Intuitively, because this prediction problem is not

concerned with the sex of the patient, one would expect that the result does not de-

pend on whether we use the original sample space, data and priors or their pooled

versions. However, as illustrated by the highlighted parts in Tables 1 and 2, such

a dependency can occur when using mixtures of Dirichlets as a prior. No such

behavior is observed for the individual Dirichlet priors in our example. ♦

In order to draw attention to this interaction between the sample space, the prior

and the resulting inferences, we propose to look at inference from a somewhat

distant perspective.
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A predictive distribution for a particular partition of the possibility space is not

a stand-alone inference tool but rather part of what we call a predictive distribution

system.

Definition 5. A predictive distribution system ΦΩ is a map from the set of all finite

partitions of a possibility space Ω to the set of all predictive distributions. For ev-

ery possible finite partition X of Ω—every finite sample space X —a predictive

distribution system ΦΩ provides a corresponding predictive distribution PX .

Properties of predictive distributions can be imposed on predictive distribution

systems, simply by imposing them element-wise. Using this convention, in the

remainder of this paper, we will consider every predictive distribution system to

be coherent, open-minded and exchangeable. Because of Theorem 1, this allows

us to identify a predictive distribution system with a map from finite partitions

to priors. For every finite partition X of the possibility space Ω, a predictive

distribution system provides us with a corresponding prior.

Example 5. Consider a (naive) predictive distribution system ΦΩ that assigns the

uniform prior to every sample space. Let {A,B1,B2} be a partition of Ω and define

B :=B1∪B2. Consider the sample spaces X := {A,B} and Y := {A,B1,B2}, with

the associated predictive distributions PX and PY . This predictive distribution

system suffers from a problem: according to the predictive distribution PX , the

marginal predictive probabilities of A and B are equal, whereas according to PY ,

the marginal predictive probability of B = B1∪B2 is twice as large as that of A. ♦

As this example illustrates, some predictive distributions systems are clearly un-

reasonable because the marginal predictive probabilities of the different predictive

distributions they consist of contradict each other. We will require that predictive
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distribution systems avoid this type of contradictions and will call any predictive

distribution system that does so marginally partition invariant.

Definition 6. A predictive distribution system ΦΩ is marginally partition invariant

if for any finite partition X of the possibility space Ω, and any finite refinement

or coarsening Y of X , the marginal predictive distributions that correspond to

PX and PY do not contradict each other.

As illustrated by Example 4, requiring a predictive distribution system to be

marginally partition invariant does not imply that all of the inferences are invariant

to how the possibility space is partitioned. This requirement implies this invari-

ance for the marginal predictive distributions—inferences drawn prior to observ-

ing any data—but the conditional predictive distributions may not exhibit such

invariance. If the conditional predictive distributions are also invariant, then the

predictive distribution system satisfies the partition invariance principle. We call

such predictive distribution systems partition invariant.

Definition 7. A predictive distribution system ΦΩ is partition invariant if for any

finite partition X of the possibility space Ω, any finite refinement or coarsening

Y of X , and any—possibly empty—finite dataset that is sufficiently detailed

to allow for the elements to be labeled according to both partitions X and Y ,

the predictive distributions PX and PY do not contradict each other: for any two

labelings (e1, . . . ,en)∈X n and (e∗1, . . . ,e
∗
n)∈Y n of the same—possibly empty—

dataset and any future event E that can be expressed in terms of both X and Y :

PX (E|X1 = e1, . . . ,Xn = en) = PY (E|X1 = e∗1, . . . ,Xn = e∗n). (7)

In other words, predictive inferences drawn by a partition invariant predic-

tive distribution system do not depend on how the possibility space is partitioned,

thereby avoiding situations such as the one described in Example 4.
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Predictive distribution systems that are derived from Dirichlet priors are prime

examples of partition invariant predictive distribution systems.4 The following

example illustrates this for a ternary possibility space. Analogous examples can

be constructed for other possibility spaces.

Example 6. Consider the possibility space Ω = {0,1,2} and the four partitions—

sample spaces—that correspond to it: X1 := {{0},{1},{2}}, X2 := {{0},{1,2}},

X3 := {{1},{0,2}} and X4 := {{2},{0,1}}. Consider α0, α1, α2 > 0 and let ΦΩ

be the predictive inference system that maps X1 to (the predictive distribution that

corresponds to) Dir(α0,α1,α2), X2 to Dir(α0,α1 +α2), X3 to Dir(α1,α0 +α2)

and X4 to Dir(α2,α0 +α1). As we will show, this predictive inference system is

partition invariant.

For reasons of symmetry, it suffices to prove Equation (7) for X = X1 and

Y = X2. So consider two labelings (e1, . . . ,en) ∈X n and (e∗1, . . . ,e
∗
n) ∈ Y n of

the same—possibly empty—dataset and any future event E that can be expressed

in terms of both X and Y . If E = (Xn+1 ∈ {1,2}), it follows from Example 2

that

PX (E|{Xi = ei}n
i=1) =

= PX (Xn+1 = 1|{Xi = ei}n
i=1)+PX (Xn+1 = 2|{Xi = ei}n

i=1)

=
k1 +α1

n+α
+

k2 +α2

n+α
=

(k1 + k2)+(α1 +α2)

n+α
= PY (E|{Xi = e∗i }n

i=1),

with α := α0 +α1 +α2. Similarly, for E = (Xn+1 = 0), we find that

PX (E|{Xi = ei}n
i=1) =

k0 +α0

n+α
= PY (E|{Xi = e∗i }n

i=1).

Hence, Equation (7) is true if E is an immediate event, in the sense that it only de-

pends on the outcome of the next experiment. Since probabilities of more general
4In fact, we will prove further on that they are the only ones.
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future events are completely characterized by conditional probabilities of imme-

diate events, it follows that ΦΩ is partition invariant. ♦

Principles that are similar to that of partition invariance have already been

proposed by other authors. In an imprecise-probabilistic context—with lower

and upper probabilities—Walley (1996) introduced the representation invariance

principle. Similar to partition invariance, this principle requires that inferences

should not depend on the sample space used. We prefer our terminology because

it stresses that the sample space is a partition of a possibility space and that the

invariance that is imposed is with respect to this partition. In a measure-theoretic

setting, Böge and Möcks (1986) proposed the learn-merge invariance principle,

which is also similar, and used this principle to characterize Dirichlet priors. The

main differences with our approach are that they apply their principle to a single

predictive distribution on a single sample space (instead of a predictive distribu-

tion system) and consider only mergers, no refinements. Consequently—and in

contrast to our approach—their results do not apply to cases in which the sample

space is binary: since a binary sample space cannot be merged (coarsened), their

learn-merge invariance principle cannot be applied to such sample spaces.

We now investigate some consequences of imposing the partition invariance

principle on a predictive distribution system. First of all: partition invariance

implies marginal partition invariance, because the latter corresponds to the special

case where no data are observed. Secondly, and more importantly: the partition

invariance principle is closely related to Johnson’s sufficientness postulate.

Proposition 3. If a predictive distribution system ΦΩ satisfies the partition invari-

ance principle (Definition 7), then each of its predictive distributions PX satisfies

Johnson’s sufficientness postulate (Definition 3).
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Proof. Consider any finite partition X of Ω and any j ∈X . If X is binary,

let Y = X . Otherwise, let Y be a binary coarsening of X such that j ∈ Y .

Consider now any finite dataset (e1, . . . ,en) ∈X n and let (e∗1, . . . ,e
∗
n)∈Y n be the

corresponding coarsened dataset. Since ΦΩ is assumed to be partition invariant,

we find

PX (Xn+1 = j | X1 = e1, . . . ,Xn = en) = PY (Xn+1 = j | X1 = e∗1, . . . ,Xn = e∗n).

Because Y is binary and PY is exchangeable, the final expression clearly depends

only on j, k j and n. Hence, PX satisfies Johnson’s sufficientness postulate; see

Definition 3.

By combining this result with Proposition 2, we obtain the following justification

for the use of Dirichlet priors.

Theorem 4. Consider any coherent, open-minded (Definition 2) and exchange-

able predictive distribution system ΦΩ, with |Ω| > 2, that allows a subject to

learn from experience (Definition 4) and satisfies the partition invariance princi-

ple (Definition 7). Then, for any finite—possibly binary—partition X of Ω, the

corresponding predictive distribution PX is derived from the multinomial likeli-

hood and a prior on the parameter space that is Dirichlet.

Proof. For |X | > 2, this is an immediate consequence of Propositions 2 and 3.

For |X | ≤ 2, consider any ternary refinement Y of X ; this is possible because

|Ω|> 2. Since |Y |> 2, we can again use Propositions 2 and 3 to find that PY is

derived from the multinomial likelihood and a prior on the parameter space that is

Dirichlet. Therefore, the marginal part of PX follows a Dirichlet-multinomial dis-

tribution. Additionally, because ΦΩ is partition invariant and therefore marginally

partition invariant, the marginal part of PX is the restriction of the marginal part
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of PY to events that can be expressed in terms of the sample space X . There-

fore, because of (Johnson, Kotz and Balakrishnan 1997, Section 35.13.1), and

(Basu and Pereira 1982), we know that the marginal part of PX also follows a

Dirichlet-multinomial distribution. The result then follows from the fact that the

Dirichlet-multinomial distribution is derived from the multinomial likelihood and

a prior on the parameter space that is Dirichlet.

Example 4 provides a nice illustration of this theorem. The distribution system

that uses mixtures of Dirichlets as priors displays a failure of partition invariance,

whereas the others—which use single Dirichlet priors—do not. Theorem 4 guar-

antees that similar behavior will be observed for any prior that is not a Dirichlet

and, in particular, for all mixtures of Dirichlets.

From a technical perspective, the importance of Theorem 4 is twofold. First,

this theorem replaces Johnson’s sufficientness postulate with the partition invari-

ance principle. Although the former is shown to be implied by the latter, we

think that the partition invariance principle is easier to justify. This is because it

explicitly relates inferences with respect to different sample spaces; we consider

Example 4 to be particularly convincing. Second, and unlike Proposition 2, this

theorem does not require the rather annoying assumption that |X | > 2. Instead,

all we have to do is regard X as a partition of some possibility space Ω for which

|Ω|> 2. In other words: the sample space X can be binary as long as the possi-

bility space Ω is not. Example 4 illustrates this: although the final probability of

interest can—and often will—be stated in terms of a binary sample space, the pos-

sibility space contains (at least) four elements, thereby allowing the application of

Theorem 4.
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5 Concluding remarks

Our contribution shows that when a subject wishes to use a predictive distribution

that (i) is coherent and open-minded, (ii) reflects a judgment of exchangeabil-

ity, (iii) allows learning from experience and (iv) is part of a predictive distribu-

tion system that satisfies the partition invariance principle and whose possibility

space—not to be confused with the sample space—contains more than two el-

ements, then this predictive distribution must be derived from the multinomial

likelihood and a prior on the parameter space that is Dirichlet. By carefully dis-

tinguishing between the sample space and the possibility space and by focusing on

predictive distribution systems rather than predictive distributions, we were able

to cover the binomial case as well.

For us, this is “certainly a more principled approach to the problem of assign-

ing a prior, in stark contrast to assuming the prior is Dirichlet purely for reasons

of mathematical convenience” (Zabell 2011). The partition invariance principle

seems to be desirable in many applications of the multinomial Bayes’s problem.

However, as Johnson (1932) did, we would like to remark that it is the researcher’s

business to assess whether the principles here proposed are reasonable.

In cases in which our principles are deemed unreasonable, other principles

could be considered, possibly leading to other types of priors. The logical ap-

proach has extensive literature discussing other principles of inductive inference.

An important example is that of “analogy by similarity”, which is concerned with

cases in which the categories are ordered or related in some manner. In such

cases, Johnson’s postulate—and thus also partition invariance—is unsuitable. See

(Skyrms 1993), (Festa 1996) and (Niiniluoto 1981) for more information about

analogy by similarity. (Kuipers 1980) and (Niiniluoto 2011) provide surveys of
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the logical approach on inductive inference.

We envision two main directions of future research, both of which fall beyond

the scope of the present study. First, other justifications for the use of Dirichlet

priors have been suggested in the literature, some of which—for example (Costan-

tini 1979)—were not mentioned yet. A detailed comparison with our approach

should be conducted. Second, we believe that the partition invariance principle

can be used to justify the use of Dirichlet processes as well.
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