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ABSTRACT. We consider coherent choice functions under the recent axiomatisation pro-
posed by De Bock and de Cooman that guarantees a representation in terms of binary
preferences, and we discuss how to define conditioning in this framework. In a multivariate
context, we propose a notion of marginalisation, and its inverse operation called weak
(cylindrical) extension. We combine this with our definition of conditioning to define a
notion of irrelevance, and we obtain the irrelevant natural extension in this framework: the
least informative choice function that satisfies a given irrelevance assessment.
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1. INTRODUCTION

Consider two random variables X1 and X2, a belief model about X2, and an assessment
that X1 is irrelevant to X2—meaning that learning about the value of X1 does not influence
our beliefs about X2. What is the least informative joint belief model about X1 and X2 that
satisfies this irrelevance assessment and that marginalises to the given belief model about
X2? This belief model is called the “irrelevant natural extension”. Having an expression
for the irrelevant natural extension is important for inference purposes, as such extensions
appear frequently in the context of credal networks [5, 6, 10].

In the framework of sets of desirable gambles, an expression for the natural extension
was established by de Cooman and Miranda [15]. In this paper, we extend their result to
choice functions.

Choice functions are related to the fundamental problem in decision theory: how to
make a choice from within a set of available (uncertain) options. In their seminal book, von
Neumann and Morgenstern [39] provided an axiomatisation of choice based on pairwise
comparisons between options, which has since received much attention, for instance by
Rubin [27] who generalised this idea and proposed a theory of choice functions based on
choices between more than two elements. One of the aspects of Rubin’s theory [27] is
that, between any pair of options, the subject either prefers one of them or is indifferent
between them, so two options are never incomparable. However, for instance when the
available information does not allow for a complete comparison of the options, the subject
may be undecided between two options without being indifferent between them; this will
for instance typically be the case when there is little relevant information available. This is
one of the motivations for a theory of imprecise probabilities [1, 40], where incomparability
and indifference are distinguished. With this idea, Kadane et al. [19] and Seidenfeld et al.
[31] generalised Rubin’s axioms to allow for incomparability.

The theory of sets of desirable gambles (and as a consequence also relevant particular
cases such as coherent lower previsions, belief functions or possibility measures) is em-
bedded into coherent choice functions.The greater generality of the latter is due to the fact
that, when choosing between a set of options, not only are assessments of incomparability
allowed, as is the case with sets of desirable gambles, but, unlike with these, the choices we
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make are not uniquely determined by making pairwise comparisons between the options. In
other words, the information of our decision model is not uniquely determined by choices
on sets of two alternatives. While this greater generality may be of interest in practice, it is
also important that such a theory of coherent choice functions is operational, in the sense
that it allows for conservative reasoning.

In this paper, we are going to study if it is possible to determine the implications in a
choice model of an assessment of irrelevance and of the notion of coherence. The latter
shall be modelled by means of the axiomatisation of De Bock and de Cooman [12], which
generalises the theory of Seidenfeld et al. [31] in that it does not have an Archimedean
axiom. One of the main advantages of the axiomatisation in De Bock and de Cooman [12]
above the earlier work by Van Camp in [33] is that it guarantees a representation in terms of
pairwise choice (that is, choices between two sets of options), in the sense we shall recall
below.

The remainder of this paper is organised as follows: in Section 2, we recall the axiomati-
sation of coherent choice functions in [12] and the connection with pairwise choice. Next, in
Section 3, we introduce our conditioning rule for choice functions, and show how it relates
with the existing conditioning rule for sets of desirable gambles. We use this definition to
define a notion of irrelevance in Section 4, from which we derive a formula for the irrelevant
natural extension. Some additional comments are gathered in Section 5. In order to ease the
reading, we have relegated the proofs to an Appendix.

2. SETS OF DESIRABLE GAMBLE SETS & SETS OF DESIRABLE GAMBLES

Consider a finite possibility space 𝒳 in which a random variable X takes values. We
denote by ℒ(𝒳 ) the set of all gambles—real-valued functions—on 𝒳 , often denoted by ℒ
when it is clear from the context what the possibility space is. As one simple example, we
have the indicator gambles: for any subset E of 𝒳 , we use IE to denote the indicator of E,
which is the gamble that assumes the value 1 on E and 0 elsewhere.

We attach the following interpretation to gambles. f (X) is an uncertain reward: if the
actual outcome turns out to be x in 𝒳 , then the subject’s capital changes by f (x). For
any two gambles f and g, we write f ≤ g when f (x) ≤ g(x) for all x in 𝒳 , and we write
f < g when f ≤ g and f ≠ g. We identify a real constant α with the (constant) gamble that
maps every element of 𝒳 to α . We collect all the non-negative gambles—the gambles f
for which f ≥ 0—in the set ℒ(𝒳 )≥0 (often denoted by ℒ≥0) and the positive ones—the
gambles f for which f > 0—in ℒ(𝒳 )>0 (often denoted by ℒ>0). Similarly, we write f ⇑≤ g
when f (x) > g(x) for some x in 𝒳 , and collect all the gambles f for which f ⇑≤ 0 in the set
ℒ(𝒳 )⇑≤0 (often denoted by ℒ⇑≤0).

We denote by 𝒬(ℒ(𝒳 )) the set of all finite subsets of ℒ(𝒳 )—also denoted by 𝒬 when
the set of gambles ℒ(𝒳 ) is clear from the context. Elements of 𝒬 are the gamble sets. We
define two special subsets of 𝒬: the collection 𝒬∅ ∶=𝒬∖{∅} of non-empty gamble sets,
and the collection 𝒬0 ∶= {A ∈𝒬∶0 ∈ A} ⊆𝒬∅ of gamble sets that include the status quo 0.

2.1. Sets of desirable gamble sets. A subject can state his preferences by specifying his
rejected gambles from within every gamble set:

Definition 1 (Rejection function). A rejection function R on ℒ(𝒳 ) is a map

R∶𝒬∅(ℒ(𝒳 ))→𝒬(ℒ(𝒳 ))∶A↦ R(A)

with the property that R(A) ⊆ A.
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The idea of a rejection function R is that it identifies the set of gambles R(A) that a
subject rejects from a given set of options A. As we will see underneath, rejecting a gamble
f from a set A means that A contains at least one gamble that is preferred over f .

Equivalent to the notion of a rejection function R is that of a choice function C, which
identifies the set C(A) ∶= A ∖R(A) of non-rejected or chosen options from every gamble
set A.

Example 1. (running example) Consider the situation where you have a coin with two
identical sides of unknown type: either both sides are heads (H) or tails (T). The random
variable X that represents the outcome of a coin flip assumes a value in the finite possibility
space 𝒳 = {H,T}. This assessment is important for inference purposes: for instance, in a
sequence of outcomes of successive flips from this coin, observing one of the outcomes
immediately fixes all the other outcomes.

Let R be a rejection function that describes this situation. If we identify a gamble f with
the array ( f (H), f (T)), then we see that both I{H} = (1,0) and I{T} = (0,1) represent a
non-negative uncertain reward, with the possibility of yielding a (strictly) positive reward.
Therefore it makes sense to require 0 ∈ R({0,I{H}}) or 0 ∈ R({0,I{T}}): both I{H} and
I{T} are preferred to the status quo 0. Similarly, since −I{H} < 0 and −I{T} < 0, we obtain
0 ∈C({0,−I{H}}) and 0 ∈C({0,−I{T}}), and even 0 ∈C({0,−I{H},−I{T}}).

The contemplations above actually hold for any rejection function R that describes a
coherent belief. What is specific to the rejection function R in the current situation, is that
at least one of the gambles −I{H} + ε or −I{T} +δ , is preferred to 0, for any ε and δ in
R>0, where we denote by R>0 the set of (strictly) positive real numbers. Indeed, if both the
side of the coin are heads, then the gamble −I{T} can be considered equivalent to 0, since
it will always yield the reward 0, and hence −I{T} +δ yields the positive reward δ so it
is preferred to 0. If both the sides of the coin are tails, a similar argument shows that the
gamble −I{H} + ε is preferred to 0 as well. Therefore, our rejection function will satisfy
0 ∈ R({0,−I{H} + ε,−I{T} +δ}), for any ε and δ in R>0. Note however that we want our
rejection function R to satisfy 0 ∈C({0,−I{H}+ε}) and 0 ∈C({0,−I{T}+δ}) for all ε and
δ in the interval (︀0,1): the presence of only −I{H}+ε does not allow us to reject 0, since
both sides of the coin may well be tails, and similarly for −I{T}+δ .

It is also interesting to remark that the rejection function we have in this example is not
equivalent to the vacuous rejection function, which only rejects a gamble f in A when there
is some other gamble g in A such that f < g: observe for instance that in our case 0 would be
rejected in the gamble set A = {0,−I{H}+ 1⇑2,−I{T}+ 1⇑2} = {0,(−1⇑2,1⇑2),(1⇑2,−1⇑2)}, while
it would be chosen in the case of a vacuous model. ⧫

We focus our attention to the special subclass of coherent rejection functions, that
describe the beliefs of a rational subject:

Definition 2 (Coherent rejection function). We call a rejection function R coherent if for
all A, A1 and A2 in 𝒬∅, all {λ f ,g ,µ f ,g ∶ f ∈ A1,g ∈ A2} ⊆R, and all f and g in ℒ:

R0. R(A) ≠ A;
R1. if f < g then f ∈ R({ f,g});
R2. if A1 ⊆ R(A2) and A2 ⊆ A then A1 ⊆ R(A);
R3. if 0 ∈ R(A1) and 0 ∈ R(A2) and if, for all f in A1 and g in A2, (λ f ,g ,µ f ,g) > 0, then

0 ∈ R({λ f ,g f +µ f ,gg∶ f ∈ A1,g ∈ A2});

R4. f ∈ R(A) if and only if f +g ∈ R(A+{g}).
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In definition, we let A1+A2 ∶= { f +g∶ f ∈ A1,g ∈ A2} be the Minkowski addition of two
gamble sets A1 and A2, and we define (λ1, . . . ,λn) > 0⇔ ((∀i ∈ {1, . . . ,n})λi ≥ 0 and (∃i ∈
{1, . . . ,n})λi > 0) for any real λ1, . . . , λn. In other words, this means that (λ1, . . . ,λn) >
0⇔ ((λ1, . . . ,λn) ≥ 0 and (λ1, . . . ,λn) ≠ 0), where we let ‘≥’ and ‘=’ work point-wisely on
(λ1, . . . ,λn). This short-hand notation is used in item R3 of this definition—and will be used
in item K3 of Definition 4 later on—where (λ f ,g,µ f ,g) > 0 means ‘λ f ,g ≥ 0 and µ f ,g ≥ 0,
with at least one of the real numbers λ f ,g and µ f ,g strictly positive’.

These rationality requirements were introduced by De Bock and de Cooman [12] as
a modification of the ones considered in Van Camp’s PhD dissertation [33] in order to
guarantee a representation of coherent rejection functions in terms of sets of desirable
gambles. In turn, Van Camp’s representation is based on—after a necessary translation from
horse lotteries to options that are represented by elements of a real linear space, such as
gambles—the representation of Seidenfeld et al. [31]. Their work is particularly important
because they were the first to introduce imprecise choice functions—that distinguish between
indifference and incomparability—in [19] and proved a representation result in terms of
probabilities in [31].

The rationality requirements of Definition 2 are very similar to those of Seidenfeld et
al. [31]. There are, however, some differences: (i) [31] considers a strictly weaker version
of Axiom R1; (ii) they use an additional Archimedean axiom that ensures representation
in terms of probabilities rather than non-Archimedean structures such as sets of desirable
gambles; and (iii) they impose a mixing axiom that rules out maximality as a decision
rule. Note that both the coherent choice functions of Seidenfeld et al. [31] and ours obey
Aizerman’s condition, commonly written as

if A1 ⊆ R(A2) and A ⊆ A1 then A1∖A ⊆ R(A2∖A),
for all A,A1,A2 in 𝒬. In our setting this is a consequence of Axioms R2 and R3.

De Bock and de Cooman [12] established a useful equivalent representation to rejection
functions, namely that of a set of desirable gamble sets:

Definition 3 (Set of desirable gamble sets). A set of desirable gamble sets K on ℒ is a
subset of 𝒬(ℒ). We collect all the sets of desirable gamble sets in K ∶=𝒫(𝒬).

The idea is that the set of desirable gamble sets K collects all the gamble sets that contain
at least one gamble that our subject strictly prefers over the status quo represented by 0, the
gamble that will leave your capital unchanged whatever the outcome. A set of desirable
gamble sets K is linked with a rejection function R as follows:

(∀A ∈𝒬)(∀ f ∈ℒ) f ∈ R(A∪{ f})⇔ A−{ f} ∈K. (1)

Running example. We continue the previous Example 1 where we want to model the
subject’s belief that a coin has two identical sides of unknown type.

This means that at least one of the gambles −I{H}+ε and −I{T}+δ , is preferred to 0, for
any ε and δ in R>0, or, in other words, that

𝒜 ∶= {{−I{H}+ε,−I{T}+δ}∶ε,δ ∈R>0} ⊆K. (2)

Later on, we will look for the (unique) least informative coherent K for which 𝒜 ⊆K, and
we take this K to be the set of desirable gamble sets that describes the information available
in this setting. In order to do so, we will specify in the rest of this section (i) what is the
meaning of coherence in this setting, (ii) what we mean by a set of desirable gamble sets to
be less informative than another one, and (iii) how to find such least informative coherent
sets of desirable gamble sets. ⧫
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De Bock and de Cooman [12] gave an axiomatisation of coherent sets of desirable
gamble sets—sets of desirable gamble sets of rational subjects: 1

Definition 4 (Coherent set of desirable gamble sets). A set of desirable gamble sets K ⊆𝒬
is called coherent if for all A, A1 and A2 in 𝒬, all {λ f ,g ,µ f ,g ∶ f ∈ A1,g ∈ A2} ⊆R, and all f
in ℒ.
K0. ∅ ∉K;
K1. A ∈K⇒ A∖{0} ∈K;
K2. { f} ∈K, for all f in ℒ>0;
K3. if A1,A2 ∈K and if, for all f in A1 and g in A2, (λ f ,g ,µ f ,g) > 0, then

{λ f ,g f +µ f ,gg∶ f ∈ A1,g ∈ A2} ∈K;

K4. if A1 ∈K and A1 ⊆ A2 then A2 ∈K, for all A1 and A2 in 𝒬.
We collect all the coherent sets of desirable gamble sets in the collection K(𝒳 ), often
simply denoted by K when it is clear from the context what the possibility space 𝒳 is.

To give an idea of some of the consequences of coherence, Axioms K0 and K1 imply
that {0} is never a desirable gamble set, as expected: it does not contain at least one gamble
that is strictly preferred over 0. Axiom K2 implies that {IE} is a desirable gamble set, for
every non-empty E ⊆𝒳 . Axiom K3 lets us infer other desirable gamble sets from any two
given desirable gamble sets, by considering positive linear combinations of gambles in
them: the idea is that, if there is at least one desirable gamble f in A1 and at least one
desirable gamble g in A2, then the gamble λ f +µg must be desirable, guaranteeing that the
set {λ f ,g f +µ f ,gg∶ f ∈ A1,g ∈ A2} is indeed a set of desirable gamble set. Axiom K4 requires
that supersets of desirable gamble sets are desirable gamble sets themselves.

Running example. If we return to our running example, we see for instance that both
{(−1⇑2,1⇑2),(1⇑2,−1⇑2)} and {(1,0)} belong to K. For notational convenience, we let f1 ∶=
(−1⇑2,1⇑2), f2 ∶= (1⇑2,−1⇑2) and g ∶= (1,0), so that { f1, f2} and {g} belong to K. Applying
Axiom K3 with (λ f1,g,µ f1,g) = (1,1⇑5) > 0 and (λ f2,g,µ f2,g) = (1⇑2,1⇑2) > 0 yields that also
{λ f1,g f1+µ f1,gg,λ f2,g f2+µ f2,gg} = {(−3⇑10,1⇑2),(3⇑4,−1⇑4)} belongs to K. If we apply now
Axiom K4 we deduce that also {(−3⇑10,1⇑2),(3⇑4,−1⇑4),(−1,−2),(1,−2)} belongs to K. ⧫

Given any rejection function R and any set of desirable gamble sets K that are linked
through Equation (1), we have that R is coherent if and only if K is.

Given two sets of desirable gamble sets K1 and K2, we follow De Bock & de Cooman [12]
in calling K1 at most as informative as K2 if K1 ⊆ K2. The resulting partially ordered set
(K,⊆) is a complete lattice where intersection serves the role of infimum, and union that of
supremum. Furthermore De Bock and de Cooman [12, Theorem 8] show that the partially
ordered set (K,⊆) of coherent sets of desirable gamble sets is a complete meet-semilattice:
given an arbitrary family {Ki∶ i ∈ I} ⊆K, its infimum inf{Ki∶ i ∈ I} =⋂i∈I Ki is a coherent set
of desirable gamble sets. There therefore is a unique smallest coherent set of desirable
gamble sets, which we call the vacuous set of desirable gamble sets Kv ∶= infK.

Lemma 1. The vacuous set of desirable gamble sets Kv is given by {A∶A ∈𝒬∩ℒ>0 ≠∅}.

Running example. Returning to our running example, we see that our set of desirable gamble
sets K is strictly more informative than the vacuous model Kv: for instance the gamble set
{−I{H}+ 1⇑2,−I{T}+ 1⇑2} = {(−1⇑2,1⇑2),(1⇑2,−1⇑2)} belongs to K but has nothing in common
with the positive gambles ℒ>0, so it does not belong to Kv. ⧫

1We refer to their article for a justification of their axioms.
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The fact that (K,⊆) is a complete meet-semilattice allows for conservative reasoning:
it makes it possible to extend a partially specified set of desirable gamble sets to the most
conservative—least informative—coherent one that includes it. This procedure is called
natural extension:

Definition 5 ([12, Definition 9]). For any assessment𝒜 ⊆𝒬, we let K(𝒜) ∶= {K ∈K∶𝒜 ⊆K}.
We call the assessment 𝒜 consistent if K(𝒜) ≠∅, and we then call clK(𝒜) ∶=⋂K(𝒜) the
natural extension of 𝒜.

One of the main results of De Bock and de Cooman [12] is their expression for the
natural extension:

Theorem 2 ([12, Theorem 10]). Consider any assessment 𝒜 ⊆𝒬. Then 𝒜 is consistent if
and only if ∅ ∉𝒜 and {0} ∉ Posi(ℒs

>0 ∪𝒜). Moreover, if 𝒜 is consistent, then clK(𝒜) =
Rs(Posi(ℒs

>0∪𝒜)).

Here we used the set ℒs(𝒳 )>0 ∶= {{ f}∶ f ∈ ℒ(𝒳 )>0}—often denoted simply by ℒs
>0

when it is clear from the context what the possibility space 𝒳 is—and the following two
operations on K defined by

Rs(K) ∶= {A ∈𝒬∶(∃B ∈K)B∖ℒ≤0 ⊆ A} (3)

Posi(K) ∶= {{
n

∑
k=1

λ
f1∶n

k fk∶ f1∶n ∈
n
⨉
k=1

Ak(︀∶n ∈N,A1, . . . ,An ∈K,(∀ f1∶n ∈
n
⨉
k=1

Ak)λ
f1∶n

1∶n > 0(︀ (4)

for all K in K. As usual, we use the short-hand notation f1∶n ∶= ( f1, . . . , fn) for any sequence
( f1, . . . , fn).

The rationale behind these two operations is the following: if A contains at least one
gamble that is preferred to the zero gamble, then so does the gamble set A ∖ℒ≤0, since
any gamble in A∩ℒ≤0 can never be preferred to the zero gamble. Taking also into account
Axiom K4, we deduce that any superset of A ∖ℒ≤0 should also allow to reject the zero
gamble. Therefore, a coherent set of desirable gamble sets should be closed under Rs.

That any coherent set of desirable gamble sets should be closed under Posi follows from
a finite number of applications of the coherence Axiom K3.

For arbitrary sets of desirable gamble sets K, we have K ⊆ Rs(K), since B ∖ℒ≤0 ⊆ B
for every B in K. Also, K ⊆ Posi(K): to see this, it suffices to choose n ∶= 1, A1 ∶= A ∈ K,
and λ

f1∶1
1∶1 ∶= 1 for all f1∶1 in ⨉1

k=1 A1 = A in the definition of the Posi operator. Therefore
K ⊆Rs(Posi(K)). For coherent sets of desirable gamble sets K however, Theorem 2 implies
that K = Rs(K) = Posi(K) = Rs(Posi(K)) = Rs(Posi(ℒs

>0 ∪K)). It is also clear from the
definitions above that for any sets of desirable gamble sets K1 ⊆ K2, we have Rs(K1) ⊆
Rs(K2) and Posi(K1) ⊆ Posi(K2).

In our earlier work [38, Theorem 1], we have found expressions for the characterisation
of consistency and the natural extension of rejection functions. Our results in that paper
were obtained in a slightly more general setting: instead of requiring Axiom R3, we required
two strictly weaker axioms. For any given assessment 𝒜, the resulting natural extension is
therefore a less informative—more conservative—rejection function that the one determined
by clK(𝒜). However, this setting was too general to obtain a representation in terms of
binary preferences, as our counterexample in [38, Section 5.1] shows. As proved by De Bock
and de Cooman [12, Theorem 7], the current axiomatisation does guarantee representation
in terms of sets of desirable gambles.

In order to illustrate Theorem 2, consider the following example, which we will also use
in Section 2.3 as an example of a non-binary set of desirable gamble sets.
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Running example. We revisit our previous running example, and look for the smallest
coherent set of desirable gamble sets K that includes𝒜 defined in Equation (2)—the natural
extension of 𝒜.

Because it will help us show that this assessment 𝒜 is consistent, we first find an
alternative expression for Posi(ℒs

>0∪𝒜):

Lemma 3. For the assessment 𝒜 of Equation (2), we have

Posi(ℒs
>0∪𝒜) = {A ∈𝒬∶((∃h1,h2 ∈ A)(h1(T) > 0 and h2(H) > 0)) or A∩ℒs

>0 ≠∅}
=Rs({{h1,h2}∶h1,h2 ∈ℒ⇑≤0 and (h1(T),h2(H)) > 0}).

To prove that 𝒜 is a consistent assessment, by Theorem 2 we need to show that ∅ ∉𝒜
and {0} ∉ Posi(ℒs

>0 ∪𝒜). By its definition, ∅ ∉ 𝒜, so we focus on showing that {0} ∉
Posi(ℒs

>0∪𝒜). Using Lemma 3 we know that Posi(ℒs
>0∪𝒜) consists of the supersets of

gamble sets {h1,h2} where none of h1 and h2 are equal to 0, so we find immediately that
indeed {0} ∉ Posi(ℒs

>0∪𝒜). Therefore 𝒜 is a consistent assessment, and by Theorem 2 its
natural extension is given by the coherent set of desirable gamble sets Rs(Posi(ℒs

>0∪𝒜)).
What is this Rs(Posi(ℒs

>0 ∪𝒜))? Thanks to Lemma 3, this can be easily found: since
Rs(Rs(K)) =Rs(K) for any gamble set K, we immediately find that the natural extension
of 𝒜 is Rs({{h1,h2}∶h1,h2 ∈ ℒ⇑≤0 and (h1(T),h2(H)) > 0}). Thus K = {A ∈𝒬∶((∃h1,h2 ∈
A)(h1(T) > 0 and h2(H) > 0)) or A ∩ℒs

>0 ≠ ∅} is the smallest coherent set of desirable
gamble sets that corresponds to our belief that the coin has two identical sides of unknown
type, and we therefore take this as our model in this running example. ⧫

2.2. Sets of desirable gambles. Since we have taken to mean “A ∈K” that A contains at
least one gamble that is desirable, the singleton elements of K play an important role: if
{ f} ∈K, then the gamble f is desirable. Given a set of desirable gamble sets, we collect in

DK ∶= { f ∈ℒ∶{ f} ∈K} (5)

the gambles that are considered desirable, and call it the set of desirable gambles based
on K.

Sets of desirable gambles can therefore be seen as special sets of desirable gamble sets.
In the recent years, there has been much interest in sets of desirable gambles on its own,
without reference to sets of desirable gamble sets or choice functions (see for instance
[1, Chapter 1] or [4, 25, 30]). One reason for this is that they include as particular cases
coherent lower previsions, and therefore most models of non-additive measures (belief
functions, possibility measures, etc) while at the same time avoiding some of the issues that
arise when conditioning on events of (lower) probability zero. A set of desirable gambles D
is simply a subset of ℒ; we collect in D ∶=𝒫(ℒ) all the sets of desirable gambles. We focus
on the special subclass of coherent sets of desirable gambles:

Definition 6 (Coherent set of desirable gambles). A set of desirable gambles D is called
coherent if for all f and g in ℒ, and λ and µ in R:
D1. 0 ∉D;
D2. ℒ>0 ⊆D;
D3. if f,g ∈D and (λ ,µ) > 0, then λ f +µg ∈D.
We collect all the coherent sets of desirable gambles in D(𝒳 ), often simply denoted by D
when it is clear from the context what the possibility space 𝒳 is.

Just as we did for sets of desirable gamble sets, we call the set of desirable gambles D1
at most as informative as set of desirable gambles D2 if D1 ⊆D2. The partially ordered set
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(D,⊆) is a complete meet-semilattice. The natural extension is defined in a similar way as
for sets of desirable gamble sets: an assessment A ⊆ℒ is called consistent if D(A) ∶= {D ∈
D∶A ⊆D} is non-empty. If this is the case, clD(A) ∶=⋂D(A) is called the natural extension
of A. The expression for the natural extension is remarkably similar to the one in Theorem 2:

Theorem 4 ([16, Theorem 1]). Consider any assessment A ⊆ℒ. Then A is consistent if and
only if 0 ∉ posi(ℒ>0∪A). Moreover, in that case clD(A) = posi(ℒ>0∪A).

In this theorem, we used the operation posi on D:

posi(A) ∶= {
n

∑
k=1

λk fk∶n ∈N, f1, . . . , fn ∈ A,λ1∶n > 0},

for all A ⊆ℒ.

2.3. Connection between sets of desirable gamble sets and sets of desirable gambles.
Given a set of desirable gamble sets K, its corresponding set of desirable gambles DK is
uniquely given by Equation (5), and it is coherent if K is [12, Proposition 6]. On the other
hand, a coherent set of desirable gambles D may have multiple sets of desirable gamble sets
corresponding to it by Equation (5), in the sense that the collection

KD ∶= {K ∈K∶DK =D}
may have more than one element. However, there is always a unique least informative one:

Proposition 5. Given a coherent set of desirable gambles D, the infimum infKD of its
compatible coherent sets of desirable gamble sets is

KD ∶= {A ∈𝒬∶A∩D ≠∅}. (6)

The coherent sets of desirable gamble sets of the form KD with D ∈D, are particularly
important. Since they are completely determined by pairwise comparison (of gambles in D
with 0), they are called binary. De Bock and de Cooman [12] established a representation
result of coherent sets of desirable gamble sets, in terms of binary ones:

Theorem 6 ([12, Theorem 7]). Every coherent set of desirable gamble sets K is dominated
by at least one binary set of desirable gamble sets: the set

D(K) ∶= {D ∈D∶K ⊆KD} (7)

is non-empty. Moreover, K =⋂{KD ∶D ∈D(K)}.

This theorem generalises the important representation result of Seidenfeld et al. [31,
Theorem 4] to a non-Archimedean setting, where the atoms that fulfil the representation
are now coherent sets of desirable gambles, rather than (Archimedean) probability mass
functions. In order to obtain their result, Seidenfeld et al. [31] needed two additional axioms:
an Archimedean one, guaranteeing an appropriate level of continuity, and a mixing axiom,
which renders Walley–Sen maximality 2 incompatible with coherent choice functions. De
Bock and de Cooman [12] let go of these two axioms, and were able to prove the general
representation Theorem 6. Additionally, they also considered the effect of adding the
mixing axiom of Seidenfeld et al. [19, 31], while still abstaining from Archimedeanity.
With this additional axiom, they have established a more specialised representation in
terms of lexicographic sets of desirable gambles, which are exactly [3, 37] the sets of
desirable gambles that correspond to lexicographic probability systems (with no non-trivial
Savage-null events)3. For a similar study using Van Camp’s axiomatisation, we refer to [37].

2See [40, Section 3.9] and [32, Section 2.1] for an introduction to this notion.
3See [28, Section 2.7] for a definition of Savage-null events.
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Running example. We continue with our running example. We derived the coherent set
of desirable gamble sets K ∶= Rs({{h1,h2}∶h1,h2 ∈ ℒ⇑≤0 and (h1(T),h2(H)) > 0}) that de-
scribes the subject’s belief that the coin has two identical sides of unknown type. In this
example we wonder whether this can be retrieved using binary comparisons: is K a binary
set of desirable gamble sets? If K was a binary set of desirable gamble sets, then K =KD for
the set of desirable gambles D ∶=DK , as is shown in [12, Proposition 5].

So let us first find DK . Using Equation (5), we find that

DK = { f ∈ℒ∶{ f} ∈K} = { f ∈ℒ∶(∃h1,h2 ∈ { f})h1,h2 ∈ℒ⇑≤0 and (h1(H),h2(T)) > 0}
= { f ∈ℒ∶ f ∈ℒ⇑≤0, f > 0} =ℒ>0,

so DK = ℒ>0 is the least informative coherent set of desirable gambles, also called the
vacuous set of desirable gambles: using pairwise comparisons only, we cannot distinguish
the current situation with a vacuous belief. This shows why sets of desirable gambles cannot
model this in a satisfactory way. Since KDK = {A ∈𝒬∶A ∩ℒ>0 ≠ ∅} does not contain the
gamble set {−I{H}+ 1

4 ,−I{T}+
1
4} while K does, this also shows that K is a non-binary set

of desirable gamble sets.
How can we represent this K? In other words, what is the representing set D(K) of

desirable gambles from Theorem 6? To find this set, consider first the two special coherent
sets of desirable gambles

DH ∶= { f ∈ℒ∶ f(H) > 0}∪ℒ>0

DT ∶= { f ∈ℒ∶ f(T) > 0}∪ℒ>0

which correspond to (practical) certainty about H and T, respectively. Indeed, if the subject
is certain about H, then any gamble that yields a positive gain when H occurs, however small,
will be desirable. Actually, in very much the same way as we did earlier, DH and DT can be
retrieved as the natural extensions of the consistent assessment AH ∶= {−I{T}+ε ∶ε ∈R>0}
and AT ∶= {−I{H}+δ ∶δ ∈R>0}, respectively.

To find D(K), we need to find all the coherent sets of desirable gambles D such that
K ⊆ KD . So consider any A in K. This implies that there is a subset {h1,h2} ⊆ A such that
h1,h2 ∈ ℒ⇑≤0 and (h1(T),h2(H)) > 0. Then A ∩DH ≠ ∅ and A ∩DT ≠ ∅, so A ∈ KDH and
A ∈KDT . Therefore DH,DT ∈D(K). But DH and DT are the only elements of D(K): to see
this, assume ex absurdo that another coherent set of desirable gambles D belongs to D(K),
so K ⊆KD . This would imply that neither −I{H}+ε nor −I{T}+δ belongs to D, for some ε

and δ in R>0. But the gamble set {−I{H}+ε,−I{T}+δ} belongs to K, a contradiction. So
we find by Theorem 6 that K =KDH ∩KDT .

This is an example of a conceptually easy type of belief that cannot be modelled by
sets of desirable gambles—and therefore also not by credal sets or lower previsions—in a
satisfactory way. The approach proposed in this work, using non-binary sets of desirable
gamble sets, provide the proper tools to model the beliefs illustrated in this example. ⧫

We are now able to discuss the interest of coherent sets of desirable gamble sets as a
model of the available information. It follows from the results above, and in particular
Theorem 6 which was first proved by De Bock & de Cooman [12, Theorem 7] that coherent
sets of desirable gamble sets can be equivalently seen as families of binary coherent sets of
desirable gamble sets—and therefore also as families of coherent sets of desirable gambles.
Therefore, they may be given a sensitivity analysis interpretation, where one of the coherent
sets of desirable gambles in this family is the ‘true’ model; this was for instance the case
with our running example.
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Translating to rejection functions, a gamble f is rejected in a gamble set when at least one
of the compatible models defined in terms of sets of desirable gambles allows us to reject f .
In other words, the choice model is represented by a set of ensembles of binary comparisons;
but it can only be summarised in terms of a single ensemble of binary comparisons when
one of the representing coherent sets of desirable gambles encompasses all the others.

This viewpoint is similar, if we were to work with sets of probability measures, to the
notion of E-admissibility [21], but without the additional assumption of convexity over
these sets. Indeed, that convexity may be inadequate in some cases is not a new proposal;
this was extensively studied among others by Seidenfeld et al. [29, 30], showing that in
some cases the axiom of mixture dominance is not reasonable. This was indeed the case for
our running example: the degenerate distributions on H and on T were assumed to be valid,
but not any non-trivial mixture of them.

The advantage of sets of desirable gamble sets is then to combine (a) the attractive
features of sets of desirable gambles to deal more easily with the problem of conditioning,
with (b) the flexibility that provides not requiring that the set of representing belief models
is convex.

3. CONDITIONING

Consider a variable X that assumes values in a non-empty possibility space 𝒳 . Suppose
that we have a belief model about X , be it a coherent set of desirable gamble sets on ℒ or a
coherent set of desirable gambles on 𝒳 , or—less general—just a single probability mass
function on X , or a set of them. When new information becomes available, in the form of
‘X assumes a value in some (non-empty) subset E of X’, we can take this into account by
conditioning our belief model on E.

For some of these belief models, such as (sets of) probability mass functions, conditioning
on events of probability zero can be problematic, because, roughly speaking, Bayes’s Rule
typically requires to divide by zero in these situations. However, working with sets of
desirable gambles is one way of overcoming this problem. In this section, we will see why,
and explain that sets of desirable gamble sets do not suffer from this problem either.

We will let any event, except for the (trivially) impossible event∅, serve as a conditioning
event. We collect the allowed conditioning events in

𝒫∅(𝒳 ) ∶= {E ⊆𝒳 ∶E ≠∅}.

We will first review how conditioning is done using sets of desirable gambles (see [16]
for more details). After that, we will introduce conditional sets of desirable gamble sets,
and study the connection between both cases. Given the discussion in Section 2.3, this
immediately translates to rejection functions and choice functions as well.

There are multiple equivalent definitions for conditional sets of desirable gambles. Most
of them, for instance those in [4, 26, 40, 41] result in a conditional set of desirable gambles
on 𝒳 . However, we find it more useful and convenient that a conditional model is defined on
gambles on E, rather than on 𝒳 , because, after getting to know that E occurs, the possibility
space becomes effectively E.

Definition 7 ([16, Equation (17)]). Consider any set of desirable gambles D ⊆ℒ(𝒳 ) and
any conditioning event E in 𝒫∅(𝒳 ). We define the conditional set of desirable gambles
D⧹︀E ⊆ℒ(E) as

D⧹︀E ∶= { f ∈ℒ(E)∶IE f ∈D}. (8)
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In this definition, we let for any E in 𝒫∅(𝒳 ) and any gamble f on E its multiplication
IE f denote the gamble on 𝒳 defined by

(IE f )(x) ∶=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

f (x) if x ∈ E
0 if x ∉ E

(9)

for all x in 𝒳 . Note that, for any gambles f and g on E, we have f ≠ g⇔ IE f ≠ IEg, and, as
a consequence, f < g⇔ IE f < IEg.

It was proved by de Cooman and Quaghebeur [16, Proposition 8] that conditioning
preserves coherence: if D is a coherent set of desirable gambles, then so is D⧹︀E, for any E
in 𝒫∅(𝒳 ). This explains why sets of desirable gambles do not suffer from conditioning on
events of probability zero: D⧹︀E is well-defined and coherent for every conditioning event
E in 𝒫∅(𝒳 ), even if E has probability zero according to some, or all, of the probabilities
induced by D.

For sets of desirable gamble sets, conditioning can be defined using the same simple
underlying ideas:

Definition 8 (Conditioning). Given any set of desirable gamble sets K and any conditioning
event E in 𝒫∅(𝒳 ), we define the conditional set of desirable gamble sets K⧹︀E on ℒ(E) as

K⧹︀E ∶= {A ∈𝒬(ℒ(E))∶IEA ∈K}, (10)

where for any A in𝒬(ℒ(E)) and E in 𝒫∅(𝒳 ), we let IEA ∶= {IEg∶g ∈A} be a set of gambles
on 𝒳 .

Running example. Consider again the coin in our running example, and assume that we toss
it twice: this means that our possibility space is now 𝒳c ∶= {(H,H),(H,T),(T,H),(T,T)}.
If we believe that the two sides of the coin are either both heads or both tails, this means that,
reasoning as in Section 2, our coherent set of desirable gamble sets should be the natural
extension of

𝒜′ ∶= {{−I{(H,H)c}+ε,−I{(T,T)c}+δ}∶ε,δ ∈R>0},
that is given by

{A ∈𝒬∶((∃h1,h2 ∈ A)(h1(T,T) > 0 and h2(H,H) > 0)) or A∩ℒs
>0 ≠∅}.

If we now assume that the first toss resulted heads, we would be conditioning on the event
E = {(H,T),(H,H)}. This produces the coherent set of desirable gamble sets

K⧹︀E ∶= {A ∈𝒬(ℒ(E))∶IEA ∈K} = {A ∈𝒬(ℒ(E))∶A∩ℒs
>0 ≠∅},

being the vacuous set of desirable gamble sets on E. ⧫

Proposition 7. Consider any set of desirable gamble sets K on ℒ(𝒳 ) and any conditioning
event E in 𝒫∅. If K is coherent, then so is K⧹︀E.

One of the useful properties of our definition of conditioning is that it preserves coherence,
as shown in Proposition 7, and therefore sets of desirable gamble sets also do not suffer
from conditioning on events of probability zero. But it should also be consistent with the
operator given in Definition 7 for sets of desirable gambles; in other words, we should
verify whether Definition 8 reduces to Definition 7 when only considering binary choice. Of
course, to investigate this, we must keep in mind the connection between sets of desirable
gamble sets and sets of desirable gambles, explained in Section 2.3.

For our two conditioning rules—the one in Definition 7 for sets of desirable gambles
and the one in Definition 8 for sets of desirable gamble sets—to be a match, we must
prove that: (i) the conditioning rule for sets of desirable gamble sets reverts to the known
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conditioning rule for the corresponding sets of desirable gambles, and (ii) in the special case
of purely binary choice, the conditioning for sets of desirable gamble sets coincides with
the conditioning rule for desirability. Mathematically, (i) means that DK⧹︀E =DK⧹︀E for any
coherent set of desirable gamble sets K and conditioning event E in 𝒫∅(𝒳 ), and (ii) means
that KD⧹︀E =KD⧹︀E , for any coherent set of desirable gambles D, and any conditioning event
E in 𝒫∅(𝒳 ). The next proposition guarantees that both these conditions are satisfied:

Proposition 8. Consider any coherent set of desirable gamble sets K, any coherent set
of desirable gambles D, and any conditioning event E in 𝒫∅(𝒳 ). Then DK⧹︀E =DK⧹︀E and
KD⧹︀E =KD⧹︀E . Furthermore, K⧹︀E =⋂{KD⧹︀E ∶D ∈D(K)}.

The last statement of Proposition 8 guarantees that the conditional set of desirable gamble
sets K⧹︀E can be retrieved by conditioning every element of K’s representing set D(K) from
Theorem 6. This is illustrated in Figure 1.

K

K⧹︀E

D(K)

{D⧹︀E∶D ∈D(K)}{KD⧹︀E ∶D ∈D(K)}

Eq. (10)

Eq. (7)

Eq. (8)

Eq. (6)

∩

FIGURE 1. Commuting diagram for conditioning.

Running example. In the previous part of this running example, we obtained the vacuous set
of desirable gamble sets on E as our conditional set of desirable gamble sets K⧹︀E. The fact
that we end up with a vacuous model (instead of a model that describes certainty about H—
after all, we observed that the first toss landed heads) might come as counter-intuitive.
Intuition for this result can best be found in Proposition 8.

By a reasoning completely analogous to the part of this running example in Section 2.3,
we find that the representing set D(K) of desirable gambles is given by {DH,H,DT,T}, where

DH,H ∶= { f ∈ℒ(𝒳c)∶ f (H,H) > 0}∪ℒ(𝒳c)>0,

DT,T ∶= { f ∈ℒ(𝒳c)∶ f (T,T) > 0}∪ℒ(𝒳c)>0.

Proposition 8 then implies that K⧹︀E =⋂{KDH,H⧹︀E ,KDT,T⧹︀E}. Let us determine the two condi-
tional sets of desirable gambles involved. To find DH,H⧹︀E = { f ∈ℒ(E)∶IE f ∈ DH,H}, note
that (H,H) ∈ E, whence (IE f )(H,H) = f (H,H) for any f in ℒ(E). Therefore DH,H⧹︀E =
{ f ∈ ℒ(E)∶ f (H,H) > 0 or IE f ∈ ℒ(𝒳c)>0} = { f ∈ ℒ(E)∶ f (H,H) > 0}∪ℒ(E)>0, which is
the set of desirable gambles on E that corresponds to a belief of certainty about (H,H).

To find DT,T⧹︀E = { f ∈ℒ(E)∶IE f ∈ DT,T}, note that (T,T) ∉ E, whence (IE f )(T,T) = 0
for any f in ℒ(E). Therefore DT,T⧹︀E = { f ∈ℒ(E)∶IE f ∈ℒ(𝒳c)>0} =ℒ(E)>0, the smallest
coherent set of desirable gambles on E. This means that KDT,T⧹︀E =Kv is the vacuous set of
desirable gamble sets on E.

Using Proposition 8, we find that K⧹︀E = inf{KDH,H⧹︀E ,KDT,T⧹︀E} = inf{KDH,H⧹︀E ,Kv} = Kv,
the vacuous set of desirable gamble sets on E. So via the set of representing sets of binary
models, we obtained the same conditional model, as guaranteed by Proposition 8.
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The intuition why we do not end up with a model that describes certainty about H is that,
for sets of desirable gamble sets that are representable by sets of probabilities, our condi-
tioning rule amounts to natural extension as a conditional rule, and not to regular extension.
For a discussion about natural extension versus regular extension, we refer to [11, 24], [6,
Section 2.7 and Chapter 3] and [40, Appendix J]. In short, natural extension considers all the
models (probabilities) in the representation, and will result in a vacuous conditional model
if there is at least one model (probability) that assigns probability zero to the conditioning
event. Loosely speaking, in this example, the culprit in the representation D(K) is DT,T.
Regular extension, in contrast, ignores the models (probabilities) in the representation
that assign probability zero to the conditioning event, resulting in a vacuous conditional
model only if every model (probability) in the representation assigns probability zero to the
conditioning event. Loosely speaking, a notion of regular extension as conditioning rule
for sets of desirable gamble sets would result in ignoring DT,T, and we would end up with
KDH,H⧹︀E , expressing certainty about H. A theory of regular extension as a conditioning rule
for sets of desirable gamble sets falls outside the scope of this paper. ⧫

4. MULTIVARIATE SETS OF DESIRABLE GAMBLE SETS

In this section, we will generalise the concepts of marginalisation, weak (cylindrical)
extension and irrelevant natural extension introduced by de Cooman and Miranda [15] for
sets of desirable gambles to choice models. We will provide the linear space of gambles, on
which we define our sets of desirable gamble sets, with a more complex structure: we will
consider the vector space of all gambles whose domain is a Cartesian product of a finite
number of finite possibility spaces. More specifically, consider n ∈N variables X1, . . . , Xn
that assume values in the finite possibility spaces 𝒳1, . . . , 𝒳n, respectively. Belief models
about these variables X1, . . . , Xn will be defined on gambles on 𝒳1, . . . , 𝒳n. We may also
consider gambles on the Cartesian product ⨉n

k=1𝒳k, giving rise to the∏n
k=1⋃︀𝒳k⋃︀-dimensional

linear space ℒ(⨉n
k=1𝒳k).

4.1. Basic notation & cylindrical extension. For every non-empty subset I ⊆ {1, . . . ,n} of
indices, we let XI be the tuple of variables that takes values in 𝒳I ∶=⨉r∈I𝒳r. We will denote
generic elements of 𝒳I as xI or zI , whose components are xi ∶= xI(i) and zi ∶= zI(i), for all i
in I. As we did before, when I = {k, . . . ,`} for some k,` in {1, . . . ,n} with k ≤ `, we will use
as a short-hand notation Xk∶` ∶= X{k,...,`}, taking values in 𝒳k∶` ∶=𝒳{k,...,`} and whose generic
elements are denoted by xk∶` ∶= x{k,...,`} = (xk, . . . ,x`).

We assume that the variables X1, . . . , Xn are logically independent, meaning that for each
non-empty subset I of {1, . . . ,n}, xI may assume every value in 𝒳I .

It will be useful for any gamble f on 𝒳1∶n, any non-empty proper subset I of {1, . . . ,n}
and any xI in 𝒳I , to interpret the partial map f(xI,⋅) as a gamble on 𝒳Ic , where Ic ∶=
{1, . . . ,n}∖ I. Likewise, for any set A of gambles on 𝒳1∶n, we let A(xI,⋅) ∶= { f(xI,⋅)∶ f ∈ A}
be a corresponding set of gambles on 𝒳I .

We will need a way to relate gambles on different domains:

Definition 9 (Cylindrical extension). Given two disjoint and non-empty subsets I and I′ of
{1, . . . ,n} and any gamble f on 𝒳I , we let its cylindrical extension f ∗ to 𝒳I∪I′ be defined by

f ∗(xI,xI′) ∶= f(xI) for all xI in 𝒳I and xI′ in 𝒳I′ .

Similarly, given any set of gambles A ⊆ℒ(𝒳I), we let its cylindrical extension A∗ ⊆ℒ(𝒳I∪I′)
be defined as A∗ ∶= { f ∗∶ f ∈ A}.
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Remark 1. Formally, f ∗ belongs to ℒ(𝒳I∪I′) while f belongs to ℒ(𝒳I). However, f ∗ is
completely determined by f and vice versa: they clearly only depend on the value of XI , and
as such, they contain the same information and correspond to the same transaction. They
are therefore indistinguishable from a behavioural point of view. Taking this into account,
we shall follow the lead of [13, 15] and we will frequently use the simplifying device of
identifying a gamble f on ℒ(𝒳I) with its cylindrical extension f ∗ on ℒ(𝒳I∪I′), for any
disjoint and non-empty subsets I and I′ of the index set {1, . . . ,n}. This convention allows
us for instance to identify ℒ(𝒳I) with a subset of ℒ(𝒳1∶n), and, as another example, for any
set A ⊆ℒ(𝒳1∶n), to regard A∩ℒ(𝒳I) as those gambles in A that depend on the value of 𝒳I
only. Therefore, for any event E in 𝒫∅(𝒳I) we can identify the gamble IE with IE×𝒳Ic , and
hence also the event E with E×𝒳Ic . This device for instance also allows us to write, for any
f on 𝒳I and g on 𝒳I∪I′ , that f ≤ g⇔ (∀xI ∈𝒳I,xI′ ∈𝒳I′) f(xI) ≤ g(xI,xI′)⇔ f ∗ ≤ g. ⧫

4.2. Marginalisation and weak extension. Suppose we have a set of desirable gamble sets
K on ℒ(𝒳1∶n) modelling a subject’s beliefs about the variable X1∶n. What is the information
that K contains about XO , where O is some non-empty subset of the index set {1, . . . ,n}?
Finding this information can be done through marginalisation.

Definition 10 (Marginalisation). Given any non-empty subset O of {1, . . . ,n} and any set
of desirable gamble sets K on ℒ(𝒳1∶n), its marginal set of desirable gamble sets margOK
on ℒ(𝒳O) is defined as

margOK ∶= {A ∈𝒬(ℒ(𝒳O))∶A ∈K} =K∩𝒬(ℒ(𝒳O)). (11)

We use the simplifying device of Remark 1 of identifying A with a subset of ℒ(𝒳1∶n).
Without resorting to this convention, we can characterise margOK as:

(∀A ∈𝒬(ℒ(𝒳O))) A ∈margOK⇔ A∗ ∈K.

It follows at once from Definition 10 that marginalisation preserves the order: if K1 ⊆K2,
then margOK1 ⊆ margOK2, for all sets of desirable gamble sets K1 and K2 on ℒ(𝒳1∶n).
Marginalisation also preserves coherence:

Proposition 9. Consider any set of desirable gamble sets K on ℒ(𝒳1∶n) and any non-empty
subset O of {1, . . . ,n}. If K is coherent, then so is margOK.

Let us compare with sets of desirable gambles. De Cooman and Miranda [15] defined,
for any non-empty subset O of {1, . . . ,n} and any set of desirable gambles D, its marginal
set of desirable gambles margOD on ℒ(𝒳O) as

margOD ∶= { f ∈ℒ(𝒳O)∶ f ∈D} =D∩ℒ(𝒳O). (12)

Let us ascertain that the definition of marginalisation reduces, in the case of binary
choice, to the one for sets of desirable gambles:

Proposition 10. Consider any non-empty subset O of {1, . . . ,n}, any set of desirable gamble
sets K on ℒ(𝒳1∶n), and any set of desirable gambles D ⊆ℒ(𝒳1∶n). Then

margODK =DmargO K and margOKD =KmargO D .

Furthermore, margOK =⋂{KmargO D ∶D ∈D(K)}.

The last statement of this proposition guarantees that the marginal set of desirable gamble
sets margOK can be retrieved by marginalising every element of K’s representing set D(K).
This is illustrated in Figure 2.
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K

margO DK

D(K)

{margOD∶D ∈D(K)}{KmargO D ∶D ∈D(K)}

Eq. (11)

Eq. (7)

Eq. (12)

Eq. (6)

∩

FIGURE 2. Commuting diagram for marginalisation.

Now that marginalisation is in place, and that we know that it coincides with the epony-
mous concept for sets of desirable gambles in the case of pairwise choice, we are ready to
look for some kind of inverse operation to it. Suppose we have a coherent set of desirable
gamble sets KO on ℒ(𝒳O) modelling a subject’s belief about XO , where O is a non-empty
subset of {1, . . . ,n}. We want to extend KO to a coherent set of desirable gamble sets on
ℒ(𝒳1∶n) that represents the same beliefs. This leads to the following definition:

Definition 11 (Weak extension). Given a coherent set of desirable gamble sets KO on
ℒ(𝒳O), the smallest coherent set of desirable gamble sets K on ℒ(𝒳1∶n) such that margOK =
KO , if it exists, is called the weak extension of KO .

Let us study this notion in more detail. Given a non-empty subset O of {1, . . . ,n} and
a coherent set of desirable gamble sets KO on ℒ(𝒳O), an assessment based on it that is
important for the weak extension, is

𝒜1∶n
KO

∶= {A∗∶A ∈KO} ⊆𝒬(ℒ(𝒳1∶n)).

To make clear that 𝒜1∶n
KO

is a collection of sets of gambles on 𝒳1∶n, we made the cylindrical
extension explicit by writing A∗. Using our simplifying device of Remark 1 however, we
can equivalently write 𝒜1∶n

KO
= KO—and we will do this throughout—and interpret it as a

collection of sets of gambles on 𝒳1∶n, and therefore as an assessment for sets of desirable
gamble sets on ℒ(𝒳1∶n).

It turns out that the weak extension always exists:

Proposition 11. Consider any non-empty subset O of {1, . . . ,n} and any coherent set of
desirable gamble sets KO on ℒ(𝒳O). Then the least informative coherent set of desirable
gamble sets on ℒ(𝒳1∶n) that marginalises to KO is given by

ext1∶n(KO) ∶=Rs(Posi(ℒs(𝒳1∶n)>0∪𝒜1∶n
KO
)), (13)

and it satisfies margO(ext1∶n(KO)) =KO .

How is this result connected with the weak extension for sets of desirable gambles?
De Cooman and Miranda [15, Proposition 7] show that, given any non-empty subset O
of {1, . . . ,n} and any coherent set of desirable gambles DO ⊆ ℒ(𝒳O), its weak extension
extD1∶n(DO) ⊆ℒ(𝒳1∶n)—the least informative coherent set of desirable gambles on 𝒳1∶n that
marginalises to DO—exists and is given by

extD1∶n(DO) ∶= posi(ℒ(𝒳1∶n)>0∪DO). (14)
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We show that the weak extension ext1∶n(KO) of a coherent set of desirable gamble sets KO
on ℒ(𝒳O) can also be retrieved by taking the weak extension of every element of KO’s
representing set D(KO) from Theorem 6:

Proposition 12. Consider any non-empty subset O of {1, . . . ,n} and any coherent set of
desirable gamble sets KO on ℒ(𝒳O). Then

ext1∶n(KO) =⋂{KextD1∶n(DO)
∶DO ∈D(KO)}.

Figure 3 illustrates the result.

KO

ext1∶n(KO)

D(KO)

{extD1∶n(DO)∶DO ∈D(KO)}{KextD1∶n(DO)
∶DO ∈D(KO)}

Eq. (13)

Eq. (7)

Eq. (14)

Eq. (6)

∩

FIGURE 3. Commuting diagram for the weak extension.

4.3. Conditioning on variables. In Section 3 we have seen how we can condition sets of
desirable gamble sets on events. Here, we take a closer look at conditioning in a multivariate
context.

Suppose we have a set of desirable gamble sets Kn on ℒ(𝒳1∶n), representing a subject’s
beliefs about the value of X1∶n. Assume now that we obtain the information that the I-tuple
of variables XI—where I is a non-empty subset of {1, . . . ,n}—assumes a value in a certain
non-empty subset EI of 𝒳I—so EI belongs to 𝒫∅(𝒳I). There is no new information about
the other variables XIc . How can we condition Kn using this new information?

This is a particular instance of Definition 8, with the following specifications: 𝒳 =𝒳1∶n
and E =EI ×𝒳Ic . The indicator IE of the conditioning event E satisfies IE(x1∶n) = IEI (xI) for
all x1∶n in 𝒳1∶n, and taking Remark 1 into account, therefore IE = IEI . Equation (9) defines
the multiplication of a gamble f on EI ×𝒳Ic with IEI to be a gamble IEI f on 𝒳1∶n, given by,
for all x1∶n in 𝒳1∶n:

IEI f(x1∶n) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

f(x1∶n) if xI ∈ EI

0 if xI ∉ EI
(15)

and the multiplication of IEI with a set A of gambles on EI×𝒳Ic is the set IEI A = {IEI f ∶ f ∈A}
of gambles on 𝒳1∶n.

Now that we have instantiated all the relevant aspects of Definition 8, we are ready to
find the conditional set of desirable gamble sets Kn⧹︀EI , given a joint set of desirable gamble
sets Kn on ℒ(𝒳1∶n):

Kn⧹︀EI = {A ∈𝒬(ℒ(EI ×𝒳Ic))∶IEI A ∈Kn}.

The conditional set of desirable gamble sets Kn⧹︀EI is defined on gambles on EI ×𝒳Ic .
However, usually—see, for instance, [6, 15]—conditioning on information about XI results
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in a model on XIc . We therefore consider

margIc(Kn⧹︀EI) = {A ∈𝒬(ℒ(𝒳Ic))∶IEI A ∈Kn}
as the set of desirable gamble sets that represents the conditional beliefs about XIc , given
that XI ∈ EI . In this context, the multiplication IEI f of IEI and a gamble f in A is defined
through Equation (15):

IEI f(x1∶n) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

f(xIc) if xI ∈ EI

0 if xI ∉ EI

for all x1∶n in 𝒳1∶n.
Note that, in the particular case of conditioning on a singleton—say, EI = {xI} for some

xI in 𝒳I—the set Kn⧹︀xI of desirable gamble sets4 is on ℒ({xI}×𝒳Ic). Every gamble f on
{xI}×𝒳Ic can be uniquely identified with a gamble f(xI,⋅) on 𝒳Ic , and therefore {xI}×𝒳Ic

can be identified with 𝒳Ic . Therefore the resulting set of desirable gamble sets Kn⧹︀xI can be
identified with its marginal margIc(Kn⧹︀xI).

Propositions 7 and 9 guarantee the coherence of margIc(Kn⧹︀EI) for any coherent Kn.
As is the case for desirability ([15, Proposition 9]), the order of marginalisation and

conditioning can be reversed, under some conditions:

Proposition 13. Consider any coherent set of desirable gamble sets Kn on ℒ(𝒳1∶n), any
disjoint and non-empty subsets I and O of {1, . . . ,n}, and any EI in 𝒫∅(𝒳I). Then

margO(Kn⧹︀EI) =margO((margI∪OKn)⧹︀EI).

4.4. Irrelevant natural extension. Now that the basic operations of multivariate sets of
desirable gamble sets—marginalisation, weak extension and conditioning—are in place,
we are ready to look at a simple type of structural assessment. The assessment that we will
consider, is that of epistemic irrelevance.

Definition 12 (Epistemic (subset) irrelevance). Consider any disjoint and non-empty subsets
I and O of {1, . . . ,n}. We say that XI is epistemically irrelevant to XO when learning about
the value of XI does not influence or change the subject’s beliefs about XO . A set of desirable
gamble sets Kn on ℒ(𝒳1∶n) is said to satisfy epistemic irrelevance of XI to XO when

margO(Kn⧹︀EI) =margOKn for all EI in 𝒫∅(𝒳I).

The idea behind this definition is that observing that XI belongs to EI turns Kn into the
conditioned set of desirable gamble sets Kn⧹︀EI on ℒ(EI ×𝒳Ic) ⊇ℒ(𝒳O), so requiring that
learning that XI belongs to EI does not affect the subject’s beliefs about XO , amounts to
requiring that the marginal models of Kn and Kn⧹︀EI should be equal.

In a similar manner, we may define the more general notion of conditional epistemic
irrelevance: given any disjoint and non-empty subsets I, O and C of {1, . . . ,n}, a set of
desirable gamble sets Kn on ℒ(𝒳1∶n) is said to satisfy epistemic irrelevance of XI to XO
conditional on XC when

margO(Kn⧹︀(EI ×{xC})) =margO(Kn⧹︀xC) for all EI in 𝒫∅(𝒳I) and all xC in 𝒳C.

We refer to [6, 7, 9, 10, 17, 22] for more information about, and some applications of,
epistemic irrelevance in graphical models.

Epistemic irrelevance can be reformulated in an interesting and slightly different manner:

4Actually, since the conditioning event is {xI}, we should write Kn⧹︀{xI} rather than Kn⧹︀xI , but since no
confusion can arise, and for notational simplicity, we will use the latter notation. A similar choice has been made
by de Cooman and Miranda in [15].
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Proposition 14. Consider any coherent set of desirable gamble sets Kn on ℒ(𝒳1∶n), and
any disjoint and non-empty subsets I and O of {1, . . . ,n}. Then the following statements are
equivalent:

(i) margO(Kn⧹︀EI) =margOKn for all EI in 𝒫∅(𝒳I);
(ii) A ∈Kn⇔ IEI A ∈Kn, for all A in 𝒬(ℒ(𝒳O)) and EI in 𝒫∅(𝒳I).
Epistemic irrelevance assessments are useful in constructing sets of desirable gamble sets

on larger domains from other ones on smaller domains. Suppose we have a set of desirable
gamble sets KO on ℒ(𝒳O), and an assessment that XI is epistemically irrelevant to XO ,
where I and O are disjoint and non-empty subsets of {1, . . . ,n}. How can we combine KO
and this irrelevance assessment into a coherent set of desirable gamble sets on ℒ(𝒳I∪O), or
more generally, on ℒ(𝒳1∶n)? We consider the following definition:

Definition 13 (Irrelevant natural extension). Consider a set of desirable gamble sets KO
on ℒ(𝒳O), and an assessment that XI is epistemically irrelevant to XO , where I and O are
disjoint and non-empty subsets of {1, . . . ,n}. The least informative coherent set of desirable
gamble sets on ℒ(𝒳1∶n) that marginalises to KO and that satisfies epistemic irrelevance of
XI to XO is called the XI −XO irrelevant natural extension of KO .

In order to study the irrelevant natural extension, the following set will play a crucial
role:

𝒜irr
I→O ∶= {IEI A∶A ∈KO and EI ∈𝒫∅(𝒳I)} (16)

which we will interpret as an assessment on ℒ(𝒳I∪O).
Theorem 15. Consider any disjoint and non-empty subsets I and O of {1, . . . ,n}, and
any coherent set of desirable gamble sets KO on ℒ(𝒳O). The XI −XO irrelevant natural
extension of KO is given by

extirr1∶n(KO) ∶= ext1∶n(Kirr
I∪O), (17)

where
Kirr

I∪O ∶=Rs(Posi(ℒs(𝒳I∪O)>0∪𝒜irr
I→O)). (18)

Furthermore,
extirr1∶n(KO) =⋂{KextD1∶n(D)

∶D ∈D(Kirr
I∪O)}.

The final statement of this theorem guarantees that the irrelevant natural extension that
marginalises to a set of desirable gamble sets KO can be retrieved by extending every
element of Kirr

I∪O ’s representing set D(Kirr
I∪O) from Theorem 6, as Figure 4 illustrates.

KO Kirr
I∪O

extirr1∶n(KO)

D(Kirr
I∪O)

{extD1∶n(D)∶D ∈D(Kirr
I∪O)}{KextD1∶n(D)

∶D ∈D(Kirr
I∪O)}

Eq. (18)

Eq. (17)

Eq. (7)

Eq. (14)

Eq. (6)

∩

FIGURE 4. Commuting diagram for the irrelevant natural extension.
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Running example. Let us return to our running example. We now consider a coin of which
we may have different beliefs, and require that learning about the outcome of this other coin
should not change our beliefs about the coin with two identical sides. Thus, if we index our
tosses by {1,2}, and take I = {1}, O = {2} to be sets of indices of the outcomes of the new
coin and of our original one, respectively, then we are interested in the XI −XO irrelevant
natural extension of KO . This is given by

extirr1∶n(KO) ∶= ext1∶n(Kirr
I∪O),

which in this case is equal to

{A ∈𝒬∶((∃h1,h2 ∈ A)(h1(H,T) > 0 and h2(H,H) > 0))}∪
{A ∈𝒬∶((∃h1,h2 ∈ A)(h1(T,T) > 0 and h2(T,H) > 0))}∪{A ∈𝒬∶A∩ℒs

>0 ≠∅}.
This is to be expected: the O-marginal of this model is given by the model for our original
coin, depicted in the part of this running example in Section 2.1, and it furthermore satisfies
the epistemic irrelevance of I to O. ⧫

5. DISCUSSION AND CONCLUSIONS

We have studied the irrelevant natural extension in the framework of choice functions. To
define this, we introduced conditioning and marginalisation in this framework. We related
our definitions and results with the existing definitions and results in the framework of sets
of desirable gambles, and showed that they match with each other. The results in this paper
are important because they are a first step for establishing a theory of credal networks with
choice functions. Besides their generality, such credal networks would have the advantage
that the local models are easy to elicit: choice functions can be assessed directly from a
subject, simply by collecting the gambles she rejects from within any given set of gambles.

In this respect, the theory of credal networks has been extended to consider the cases
where the imprecise models in each node are coherent lower previsions [2, 14] or sets of
desirable gambles [10, 17]. We believe that it should be easy to combine our results in order
to make a further generalisation to choice functions. Specifically, (i) we should make an
assessment of conditional epistemic irrelevance, so that the non-parents non-descendants
of a given node are epistemically irrelevant to it, conditional on its parents; (ii) extend the
results in this paper to conditional epistemic irrelevance so as to obtain the resulting models
in terms of sets of desirable gamble sets; and (iii) use the work on natural extension by De
Bock & de Cooman [12] in order to find the natural extension, or least committal extension,
of the union of those models.

One important issue that is still open is the lack of an expression for the independent natu-
ral extension for choice functions. The independent natural extension is a symmetric version
of the irrelevant natural extension: if XI is independent to XO , then both XI is irrelevant to
XO , and vice versa. This arises typically in credal networks; the easiest credal network in
which its graphical interpretation implies symmetrised irrelevance is the following.

X1

X2 X3

In this case, X2’s non-parent non-descendant is X3, so the common interpretation of the
credal network—that for every variable X its non-parent non-descendants are irrelevant to
X conditional on the value of X’s parent—requires that X3 is conditionally irrelevant to X2
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given X1. Similarly, X3’s non-parent non-descendant is X2, so X2 is conditionally irrelevant
to X3 given X1: in other words, X2 and X3 are conditionally epistemic independent given
X1. We expect the representation result of De Bock and de Cooman [12, Theorem 7] to be
crucial for an expression for the (conditionally) epistemic independent natural extension
this. A first step in this direction, would be to establish the following representation of the
irrelevant natural extension:

extirr1∶n(KO) =⋂{K
extD,irr

1∶n (DO)
∶DO ∈D(KO)}

where extD,irr
1∶n (DO) is the irrelevant natural extension for sets of desirable gambles, es-

tablished in [15]. We suspect furthermore that this independent natural extension will be
given by the set of desirable gamble sets Rs(Posi(ℒs(𝒳1∶n)>0∪𝒜irr

I→O ∪𝒜irr
O→I)). These are

conjectures of us, based on some preliminary insight, but we have no proof as of yet.
In addition, it would also be interesting to consider other, intermediate notions of irrel-

evance and independence, such as the notion of subset irrelevance considered in [8], and
more generally, the compatibility of choice functions with other structural assessments, such
as weak and strong invariance. In this sense, in [34] and [36] we studied how to embed the
notions of exchangeability and indifference within the theory of coherent choice functions;
it should not be very difficult to extend those results to the alternative axiomatisation by De
Bock and de Cooman [8] we have considered in this paper.

Another future line of research would be the connection of our choice functions with
decision trees. These were already extended to the imprecise case in [18, 20]. In this respect,
we expect that the study of the connections with the different decision rules made in [36]
may be useful.

Finally, it seems that it is only a small step, by combining suitably the operations
of epistemic irrelevance, weak extension and natural extension, to establish a marginal
extension theorem [23, 40] in the theory of choice functions. This would open the door for
a connection between choice functions and stochastic processes.
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APPENDIX A. PROOFS

Proof of Lemma 1. For notational convenience, we let K̃ ∶= {A ∈𝒬∶A∩ℒ>0 ≠∅}; we will
show (i) that any coherent set of desirable gamble sets K must include K̃, and (ii) that K̃
is a coherent set of desirable gamble sets. (i) and (ii) together imply that K̃ is indeed the
smallest coherent set of desirable gamble sets, which we indicated by Kv.

For (i), consider any coherent set of desirable gamble sets K, and any gamble set A
in K̃. This means by the definition of K̃ that f ∈ A for some f in ℒ>0, whence { f} ∈ K by
Axiom K2. Using Axiom K4 we infer that indeed A ∈ K. So we see that K̃ ⊆ K for any K
in K.

For (ii), note that ∅ ∉ K̃ by its definition, so it satisfies Axiom K0. For Axiom K1, it
suffices to note that (A ∖{0})∩ℒ>0 ≠∅ whenever A ∩ℒ>0 ≠∅. For Axiom K2, note that
{ f}∩ℒ>0 ≠∅⇔ f ∈ℒ>0, whence indeed { f} ∈ K̃ by its definition. For Axiom K3, consider
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any A1 and A2 in K̃, meaning that h1 > 0 and h2 > 0 for some h1 in A1 and h2 in A2. Then for
any choice of (λh1,h2 ,µh1,h2) > 0 we have that λh1,h2h1+µh1,h2h2 > 0, which belongs to the
gamble set {λ f ,g f+µ f ,gg∶ f ∈A1,g ∈A2}. Therefore indeed {λ f ,g f+µ f ,gg∶ f ∈A1,g ∈A2} ∈ K̃
by its definition. Finally, for Axiom K4, consider any gamble sets A1 and A2 such that A1 ⊆A2
and A1 ∈ K̃—meaning that f ∈ A1 for some f in ℒ>0. Since A1 ⊆ A2, we have also f ∈ A2
whence indeed A2 ∈ K̃. �

Proof of Lemma 3. For the sake of brevity, we denote

K1
H,T ∶= {A ∈𝒬∶((∃h1,h2 ∈ A)(h1(T) > 0 and h2(H) > 0)) or A∩ℒs

>0 ≠∅},
K2

H,T ∶=Rs({{h1,h2}∶h1,h2 ∈ℒ⇑≤0,(h1(T),h2(H)) > 0}).

We will show (i) that Posi(ℒs
>0 ∪𝒜) ⊆ K1

H,T, (ii) that K1
H,T ⊆ K2

H,T, and (iii) that K2
H,T ⊆

Posi(ℒs
>0∪𝒜).

For (i)—to show that Posi(ℒs
>0∪𝒜)⊆K1

H,T—consider any gamble set A in Posi(ℒs
>0∪𝒜).

This means that there are n in N, A1, . . . , An in ℒs
>0 ∪𝒜, and, for all f1∶n in ⨉n

k=1 Ak,

coefficients λ
f1∶n

1∶n > 0, such that A = {∑n
k=1 λ

f1∶n
k fk∶ f1∶n ∈⨉n

k=1 Ak}. Without loss of generality,
assume that A1, . . . ,A` ∈𝒜 and A`+1, . . . ,An ∈ ℒs

>0 for some ` in {0, . . . ,n}. Therefore, we
may denote, also without loss of generality, A1 = {−I{H}+ε1,−I{T}+δ1}, . . . , A` = {−I{H}+
ε`,−I{T}+δ`}, A`+1 = {g`+1}, . . . , An = {gn}, where ε1, δ1, . . . , ε`, δ` are elements of R>0

and g`+1, . . . , gn elements ofℒ>0. If `= 0 or λ
f1∶n

1∶` = 0 for some f1∶n in⨉n
k=1 Ak—and therefore

necessarily λ
f1∶n
`+1∶n > 0—then we have that ∑n

k=1 λ
f1∶n

k fk =∑n
k=`+1 λ

f1∶n
k gk is a gamble in ℒ>0,

so we find that A∩ℒs
>0 ≠∅. If, on the other hand, ` ≥ 1 and λ

f1∶n
1∶` ≠ 0—and hence λ

f1∶n
1∶` > 0—

for every f1∶n in ⨉n
k=1 Ak, then for the two sequences of gambles f H

1∶n = ( f H
1 , . . . , f H

n ) ∶=
(−I{H} + ε1, . . . ,−I{H} + ε`,g`+1, . . . ,gn) and f T

1∶n = ( f T
1 , . . . , f T

n ) ∶= (−I{T} +δ1, . . . ,−I{T} +
δ`,g`+1, . . . ,gn) in ⨉n

k=1 Ak we have that

h1 ∶=
n

∑
k=1

λ
f H
1∶n

k f H
k =

`

∑
k=1

λ
f H
1∶n

k f H
k +

n

∑
k=`+1

λ
f H
1∶n

k gk ≥
`

∑
k=1

λ
f H
1∶n

k f H
k = −I{H}

`

∑
k=1

λ
f H
1∶n

k +
`

∑
k=1

λ
f H
1∶n

k εk

and, similarly,

h2 ∶=
n

∑
k=1

λ
f T
1∶n

k f T
k ≥ −I{T}

`

∑
k=1

λ
f T
1∶n

k +
`

∑
k=1

λ
f T
1∶n

k δk,

so h1(T) ≥∑`
k=1 λ

f H
1∶n

k εk > 0 and h2(H) ≥∑`
k=1 λ

f T
1∶n

k δk > 0. Note that both h1 and h2 belong
to A, so we find that (∃h1,h2 ∈ A)(h1(T) > 0 and h2(H) > 0). Therefore indeed Posi(ℒs

>0∪
𝒜) ⊆K1

H,T.
For (ii)—to show that K1

H,T ⊆K2
H,T—consider any gamble set A in K1

H,T. Then (a) h1(T) >
0 and h2(H) > 0 for some h1 and h2 in A, or (b) A∩ℒs

>0 ≠∅. If (a), then h1,h2 ∈ℒ⇑≤0, and
(h1(T),h2(H)) > 0, so A ∈K2

H,T. If (b), then h > 0 for some h in A, so for h1 ∶= h2 ∶= h trivially
h1,h2 ∈ ℒ⇑≤0, and (h1(T),h2(H)) = (h(T),h(H)) > 0, whence A ∈ K2

H,T. We conclude that
indeed K1

H,T ⊆K2
H,T.

For (iii)—to show that K2
H,T ⊆ Posi(ℒs

>0∪𝒜)—consider any gamble set A in K2
H,T. Then

A ⊇ {h1,h2}∖ℒ≤0 = {h1,h2} for some h1 and h2 in ℒ⇑≤0 such that (h1(T),h2(H)) > 0.
Without loss of generality, rename the gambles in

A = { f I
1, . . . , f I

nI
, f II

1 , . . . , f II
nII
, f III

1 , . . . , f III
nIII

, f IV
1 , . . . , f IV

nIV
},
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with nI, nII, nIII and nIV in {0}∪N such that n ∶= 2nI+nII+2nIII+nIV ≥ 1, gambles f I
1, . . . ,

f I
nI

in the positive quadrant ℒ>0, gambles f II
1 , . . . , f II

nII
in the second quadrant ℒII ∶= { f ∈

ℒ∶ f(H) < 0 < f(T)}, gambles f III
1 , . . . , f III

nIII
in the negative quadrant ℒ≤0, and gambles

f IV
1 , . . . , f IV

nIV
in the fourth quadrant ℒIV ∶= { f ∈ℒ∶ f(T) < 0 < f(H)}. We must show that A

belongs to Posi(ℒs
>0∪𝒜). To this end, we will construct n gamble sets A1, . . . , An and, for

every f1∶n in ⨉n
k=1 Ak, coefficients λ

f1∶n
1∶n > 0 such that A = {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈⨉n
k=1 Ak}.

Let A1 ∶= {g1} ∈ ℒs
>0, . . . , AnI ∶= {gnI} ∈ ℒs

>0. We consider the additional nI gamble
sets AnI+1 ∶= . . . ∶= A2nI ∶= {−I{H} +1,−I{T} +1} ∈𝒜, in order to have enough freedom in
selecting the coefficients λ

f1∶n
1∶n > 0 later on. For every i in {1, . . . ,nII}, let A2nI+i ∶= {−I{H}+

εi,−I{T}+δ} ∈𝒜 with εi ∶= f II
i (T)

f II
i (T)− f II

i (H)
> 0 and δ ∶= f IV

1 (H)
f IV
1 (H)− f IV

1 (T)
> 0 if nIV ≥ 1, otherwise

δ ∶= 1. For every i in {1, . . . ,nIII}, if f III
i ≠ 0, let A2nI+nII+i ∶= {−I{H} + 1

4 ,−I{T} + 1} ∈ 𝒜
and A2nI+nII+nIII+i ∶= {−I{H} +1,−I{T} + 1

4} ∈𝒜; if f III
i = 0, let A2nI+nII+i ∶= A2nI+nII+nIII+i ∶=

{−I{H}+ 1
2 ,−I{T}+

1
2} ∈𝒜. Finally, for every i in {1, . . . ,nIV}, let A2nI+nII+2nIII+i ∶= {−I{H}+

1,−I{T}+δi} ∈𝒜 with δi ∶= f IV
i (H)

f IV
i (H)− f IV

i (T)
> 0.

The set ⨉n
k=1 Ak contains 2n−nI = 2nI+nII+2nIII+nIV sequences. Each such sequence f1∶n is

characterised by a choice of fi in the binary set Ai—which we will denote by {gH
i ,g

T
i },

where gH
i is the gamble in Ai of the form −I{H} + ε and gT

i the gamble in Ai of the form
−I{T} +δ—, for every i in {nI +1, . . . ,n}. For the first nI entries f1∶nI of f1∶n we have no
choice but to chose f1∶nI = g1∶nI , since ⨉nI

k=1 Ak is the singleton {g1∶nI}.
For any sequence f1∶n in ⨉n

k=1 Ak, define n real coefficients λ
f1∶n

1∶n as follows:
● Situation (a): If there is an i in {2nI+1, . . . ,2nI+nII} such that

( f2nI+1, . . . , fi−1, fi, fi+1, . . . , f2nI+nII+nIII , f2nI+nII+nIII+1, . . . , fn)
= (gT

2nI+1, . . . ,g
T
i−1,g

H
i ,g

T
i+1, . . . ,g

T
2nI+nII+nIII

,gH
2nI+nII+nIII+1, . . . ,g

H
n )

or, in other words, such that fi = gH
i , (∀k ∈ {2nI+1, . . . ,2nI+nII+nIII}∖{i}) fk = gT

k ,
and (∀k ∈ {2nI+nII+nIII+1, . . . ,n}) fk = gH

k , then let

λ
f1∶n

i ∶= f II
j (T)− f II

j (H) > 0 for j ∶= i−2nI,

λ
f1∶n

k ∶= 0 for all k in {1, . . . ,n}∖{i}.

● Situation (b): If there is an i in {2nI+nII+2nIII+1, . . . ,n} such that

( f2nI+1, . . . , f2nI+nII+nIII , f2nI+nII+nIII+1, . . . , fi−1, fi, fi+1, . . . , fn)
= (gT

2nI+1, . . . ,g
T
2nI+nII+nIII

,gH
2nI+nII+nIII+1, . . . ,g

H
i−1,g

T
i ,g

H
i+1, . . . ,g

H
n ),

or, in other words, such that fi = gT
i , (∀k ∈ {2nI+1, . . . ,2nI+nII+nIII}) fk = gT

k , and
(∀k ∈ {2nI+nII+nIII+1, . . . ,n}∖{i}) fk = gH

k , then let

λ
f1∶n

i ∶= f IV
j (H)− f IV

j (T) > 0 for j ∶= i−2nI−nII−2nIII,

λ
f1∶n

k ∶= 0 for all k in {1, . . . ,n}∖{i}.

● Situation (c): If there is an i in {2nI+nII+1, . . . ,2nI+nII+nIII} such that

( f2nI+1, . . . , fi−1, fi, fi+1, . . . , f2nI+nII+nIII ,

f2nI+nII+nIII+1, . . . , fnIII+i−1, fnIII+i, fnIII+i+1, . . . , fn)
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= (gT
2nI+1, . . . ,g

T
i−1,g

H
i ,g

T
i+1, . . . ,g

T
2nI+nII+nIII

,

gH
2nI+nII+nIII+1, . . . ,g

H
nIII+i−1,g

T
nIII+i,g

H
nIII+i+1, . . . ,g

H
n ),

or, in other words, such that fi = gH
i , fnIII+i = gT

nIII+i, (∀k ∈ {2nI +1, . . . ,2nI +nII +
nIII}∖{i}) fk = gT

k and (∀k ∈ {2nI+nII+nIII+1, . . . ,n}∖{nIII+ i}) fk = gH
k , then let

λ
f1∶n

k ∶= 0 for all k in {1, . . . ,n}∖{i,nIII+ i};

λ
f1∶n

i ∶= λ
f1∶n

nIII+i ∶= 1 if f III
i−2nI−nII

= 0,

λ
f1∶n

i ∶= −1
2
(3 f III

j (H)+ f III
j (T)) > 0 and

λ
f1∶n

nIII+i ∶= −
1
2
( f III

j (H)+3 f III
j (T)) > 0 if f III

i−2nI−nII
≠ 0.

● Situation (d): If none of the Situations (a), (b) nor (c) apply, and if there is an i in
{nI+1, . . . ,2nI} such that

( fnI+1, . . . , fi−1, fi, fi+1, . . . , f2nI) = (g
T
nI+1, . . . ,g

T
i−1,g

H
i ,g

T
i+1, . . . ,g

T
2nI
),

or, in other words, such that fi = gH
i and (∀k ∈ {nI+1, . . . ,2nI}∖{i}) fk = gT

k , then
let

λ
f1∶n

i−nI
∶= 1,

λ
f1∶n

k ∶= 0 for all k in {1, . . . ,n}∖{i−nI}.

● Situation (e1): If A∩ℒ>0 ≠∅—so nI ≥ 1—and none of the Situations (a), (b), (c)
nor (d) apply, then let

λ
f1∶n

1 ∶= 1 and λ
f1∶n

2∶n ∶= 0.

● Situation (e2): If A∩ℒ>0 =∅—so nII ≥ 1 and nIV ≥ 1 because (h1(T),h2(H)) > 0—
and none of the Situations (a), (b), (c) nor (d) apply, then let, with i ∶= 2nI+1,

λ
f1∶n

i ∶= f II
1 (T)− f II

1 (H) > 0 if fi = gH
i ,

λ
f1∶n

i ∶= f IV
1 (H)− f IV

1 (T) > 0 if fi = gT
i ,

λ
f1∶n

k ∶= 0 or all k in {1, . . . ,n}∖{i}.

In this way, we have defined coefficients λ
f1∶n

1∶n > 0 for every f1∶n in ⨉n
k=1 Ak. It only remains

to show, with our choices of λ
f1∶n

1∶n > 0, that A = {∑n
k=1 λ

f1∶n
k fk∶ f1∶n ∈⨉n

k=1 Ak}.
We first prove that A ⊆ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈⨉n
k=1 Ak}. We do this by checking that every

element of A belongs to {∑n
k=1 λ

f1∶n
k fk∶ f1∶n ∈⨉n

k=1 Ak}. To show that f II
j ∈ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈
⨉n

k=1 Ak} for every j in {1, . . . ,nII}, consider any f1∶n in ⨉n
k=1 Ak such that f1∶n satisfies the

conditions of Situation (a) for i ∶= j+2nI, which is then an element of {2nI+1, . . . ,2nI+nII}.
Then

n

∑
k=1

λ
f1∶n

k fk = ( f II
j (T)− f II

j (H))gH
i

= ( f II
j (T)− f II

j (H))
⎛
⎝
−I{H}+

f II
i (T)

f II
i (T)− f II

i (H)
⎞
⎠

= ( f II
j (H)− f II

j (T))I{H}+ f II
j (T) = f II

j ,

so indeed f II
j ∈ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈⨉n
k=1 Ak}.
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To show that f IV
j ∈ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈⨉n
k=1 Ak} for every j in {1, . . . ,nIV}, consider any

f1∶n in⨉n
k=1 Ak such that f1∶n satisfies the conditions of Situation (b) for i ∶= j+2nI+nII+2nIII,

which is then an element of {2nI+nII+2nIII+1, . . . ,n}. Then
n

∑
k=1

λ
f1∶n

k fk = ( f IV
j (H)− f IV

j (T))gT
i

= ( f IV
j (H)− f IV

j (T))
⎛
⎝
−I{T}+

f IV
i (H)

f IV
i (H)− f IV

i (T)
⎞
⎠

= ( f IV
j (T)− f IV

j (H))I{T}+ f IV
j (H) = f IV

j ,

so indeed f IV
j ∈ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈⨉n
k=1 Ak}.

To show that f III
j ∈ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈⨉n
k=1 Ak} for every j in {1, . . . ,nIII}, consider any

f1∶n in ⨉n
k=1 Ak such that f1∶n satisfies the conditions of Situation (c) for i ∶= j+2nI +nII,

which is then an element of {2nI+nII+1, . . . ,2nI+nII+nIII}. Then
n

∑
k=1

λ
f1∶n

k fk = −
1
2
(3 f III

j (H)+ f III
j (T))gH

i −
1
2
( f III

j (H)+3 f III
j (T))gT

i

= −1
2
(3 f III

j (H)+ f III
j (T))(−I{H}+

1
4
)− 1

2
( f III

j (H)+3 f III
j (T))(−I{T}+

1
4
)

= f III
j (H)I{H}+ f III

j (T)I{T} = f III
j

if f III
j ≠ 0, and

n

∑
k=1

λ
f1∶n

k fk = gH
i +gT

i = −I{H}+
1
2
− I{T}+

1
2
= 0 = f III

j

if f III
j = 0, so indeed f III

j ∈ {∑n
k=1 λ

f1∶n
k fk∶ f1∶n ∈⨉n

k=1 Ak}.

To show that f I
j ∈ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈⨉n
k=1 Ak} for every j in {1, . . . ,nI}, consider any f1∶n

in⨉n
k=1 Ak such that f1∶n satisfies the conditions of Situation (d) for i ∶= j+nI, which is then an

element of {nI+1, . . . ,2nI}. Then ∑n
k=1 λ

f1∶n
k fk = g j = f I

j , so indeed f I
j ∈ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈
⨉n

k=1 Ak}.
We finally show, conversely, that A ⊇ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈ ⨉n
k=1 Ak}. Consider any f

in {∑n
k=1 λ

f1∶n
k fk∶ f1∶n ∈ ⨉n

k=1 Ak}. Then f = ∑n
k=1 λ

f1∶n
k fk for some f1∶n in ⨉n

k=1 Ak. If this
f1∶n satisfies the conditions of Situation (a) for some i in {2nI + 1, . . . ,2nI + nII}, then
∑n

k=1 λ
f1∶n

k fk = f II
j for j ∶= i− 2nI, as shown above, so f ∈ A. If f1∶n satisfies the condi-

tions of Situation (b) for some i in {2nI + nII + 2nIII + 1, . . . ,n}, then ∑n
k=1 λ

f1∶n
k fk = f IV

j
for j ∶= i− 2nI − nII − 2nIII, as shown above, so f ∈ A. If f1∶n satisfies the conditions of
Situation (c) for some i in {2nI + nII + 1, . . . ,2nI + nII + nIII}, then ∑n

k=1 λ
f1∶n

k fk = f III
j for

j ∶= i−2nI −nII, as shown above, so f ∈ A. If f1∶n satisfies the conditions of Situation (d)
for some i in {nI + 1, . . . ,2nI}, then ∑n

k=1 λ
f1∶n

k fk = f I
j for j ∶= i− nI, as shown above, so

f ∈ A. The only other possibility is that f1∶n satisfies the conditions of Situation (e1)
or (e2), depending on whether or not A ∩ℒ>0 ≠ ∅. If A ∩ℒ>0 ≠ ∅ (so Situation (e1)),
then ∑n

k=1 λ
f1∶n

k fk = f I
1, which is an element of A since nI ≥ 1, so f ∈ A. If A ∩ℒ>0 = ∅

(so Situation (e2)), then ∑n
k=1 λ

f1∶n
k fk = ( f II

1 (T)− f II
1 (H))(−I{H} +

f II
1 (T)

f II
1 (T)− f II

i (H)
) = f II

1 or

∑n
k=1 λ

f1∶n
k fk = ( f IV

1 (H)− f IV
1 (T))(−I{H} +

f IV
1 (H)

f IV
1 (H)− f IV

i (T)
) = f IV

1 , which both belong to A
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since nII ≥ 1 and nIV ≥ 1, so f ∈ A. There are no other possibilities, so we conclude that
indeed A ⊇ {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈⨉n
k=1 Ak}. �

Proof of Proposition 5. By definition, the least informative coherent set of desirable gamble
sets that includes {{ f}∶ f ∈ D} is the natural extension clK(𝒜D) of the assessment 𝒜D ∶=
{{ f}∶ f ∈D}.

Let us first show that 𝒜D is consistent. By Theorem 2, we need to show that ∅ ∉𝒜D and
{0} ∉ Posi(ℒs

>0∪𝒜D) = Posi(𝒜D), where the equality follows from the fact that ℒs
>0 ⊆𝒜D

by Axiom D2. By definition, ∅ ∉𝒜D , so it remains to prove that {0} ∉Posi(𝒜D). To this end,
consider any singleton {g} in Posi(𝒜D). There are n in N, f1, . . . , fn in D, and coefficients
λ

f1∶n
1∶n > 0, such that ∑n

k=1 λ
f1∶n

k fk = g. Since f1, . . . fn belong to D, so does ∑n
k=1 λ

f1∶n
k fk, by

repeated application of Axiom D3. So g ∈D. By Axiom D1, 0 ∉D, whence indeed g ≠ 0.
We now know that 𝒜D is consistent, so by Theorem 2, its natural extension clK(𝒜D)

is equal to Rs(Posi(𝒜D)), since we already know that ℒs
>0 ⊆𝒜D . Let us show that KD =

Rs(Posi(𝒜D)); we prove (i) KD ⊆ Rs(Posi(𝒜D)) and (ii) KD ⊇ Rs(Posi(𝒜D)). For (i),
consider any A in KD , so A∩D ≠∅, and therefore f ∈ A for some f in D. This tells us that
{ f} ∈𝒜D . Since K ⊆ Posi(K) for any K in K, we find that { f} ∈ Posi(𝒜D). Therefore, any
superset of { f}—and in particular indeed the set A—will belong to Rs(Posi(𝒜D)).

Let us now show that (ii) KD ⊇Rs(Posi(𝒜D)). To this end, consider any element A of
Rs(Posi(𝒜D)). Then, by the definition of the Rs operator, there is some B in Posi(𝒜D)
such that B∖ℒ≤0 ⊆ A. This means that there are n in N, A1, . . . , An in ℒs

>0∪𝒜D , and, for all

f1∶n in ⨉n
k=1 Ak, coefficients λ

f1∶n
1∶n > 0, such that {∑n

k=1 λ
f1∶n

k fk∶ f1∶n ∈⨉n
k=1 Ak} = B. Since the

entries of any sequence f1∶n in ⨉n
k=1 Ak belong to ℒ>0∪D, so does ∑n

k=1 λ
f1∶n

k fk, by repeated
application of Axiom D3. So we find B ⊆D∪ℒ>0 =D, where the equality is a consequence
of Axiom D2, and hence B∖ℒ≤0 ⊆D. So A∩D ≠∅, and therefore indeed A ∈KD .

We finish the proof by showing that KD is indeed compatible with D, or, in other words,
that DKD =D. Indeed, DKD = { f ∈ℒ∶{ f} ∈KD} = { f ∈ℒ∶{ f}∩D ≠∅} =D. �

Proof of Proposition 7. For Axiom K0, consider any A in K⧹︀E. Then IEA ∈ K, whence
IEA ≠∅ since K satisfies Axiom K0. Therefore indeed A ≠∅.

For Axiom K1, consider any A in K⧹︀E. Then IEA ∈ K, whence IEA ∖{0} ∈ K since K
satisfies Axiom K1. Since IE f ≠ 0⇔ f ≠ 0 for any gamble f on E, we find that IE(A∖{0}) ∈
K, whence indeed A∖{0} ∈K⧹︀E.

For Axiom K2, consider any f in ℒ(E)>0. Then IE f ∈ℒ(𝒳 )>0, whence by Axiom K2
{IE f} ∈K. Therefore indeed { f} ∈K⧹︀E.

For Axiom K3, consider any A1 and A2 in K⧹︀E, and, for any f in A1 and g in A2, any
(λ f ,g ,µ f ,g) > 0. Then IEA1 ∈ K and IEA2 ∈ K, whence by Axiom K3 {λ f ,g f + µ f ,gg∶ f ∈
IEA1,g ∈ IEA2} = {λ f ,gIE f +µ f ,gIEg∶ f ∈ A1,g ∈ A2} = IE{λ f ,g f +µ f ,gg∶ f ∈ A1,g ∈ A2} ∈ K,
where we identified (λIE f ,IE g ,µIE f ,IE g) with (λ f ,g ,µ f ,g), for any f in A1 and g in A2.
Therefore indeed {λ f ,g f +µ f ,gg∶ f ∈ A1,g ∈ A2} ∈K⧹︀E.

For Axiom K4, consider any A1 in K⧹︀E and any A2 in 𝒬(ℒ(E)) such that A1 ⊆ A2. Then
IEA1 ∈K and IEA1 ⊆ IEA2, whence IEA2 ∈K by Axiom K4. Therefore indeed A2 ∈K⧹︀E. �

Proof of Proposition 8. For the first statement, consider any f in ℒ(E), and infer the fol-
lowing chain of equivalences:

f ∈DK⧹︀E⇔ IE f ∈DK ⇔ {IE f} ∈K⇔ { f} ∈K⧹︀E⇔ f ∈DK⧹︀E ,

where the first equivalence follows from Definition 7, the second one and the last one are
due to Equation (5), and the third one follows from Definition 8.
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For the second statement, consider any A in 𝒬(ℒ(E)) and the following chain of
equivalences:

A ∈KD⧹︀E⇔ IEA ∈KD ⇔ IEA∩D ≠∅⇔ (∃ f ∈ A)IE f ∈D⇔ A∩D⧹︀E ≠∅⇔ A ∈KD⧹︀E ,

where the first equivalence follows from Definition 8, the second one and the last one are
due to Proposition 5, and the fourth one follows from Definition 7.

We now turn to the last statement. By Theorem 6 we have that K =⋂{KD ∶D ∈ D(K)},
implying that A ∈K⇔ (∀D ∈D(K))A ∈KD , for any A in𝒬(ℒ(𝒳 )). Therefore in particular,
for any A in 𝒬(ℒ(E)),

A ∈K⧹︀E⇔ IEA ∈K⇔ (∀D ∈D(K))IEA ∈KD

⇔ (∀D ∈D(K))A ∈KD⧹︀E
⇔ (∀D ∈D(K))A ∈KD⧹︀E

⇔ A ∈⋂{KD⧹︀E ∶D ∈D(K)},
where the first and third equivalences follow from Definition 8, and the fourth one follows
from the already established second statement of this proposition. Therefore indeed K⧹︀E =
⋂{KD⧹︀E ∶D ∈D(K)}. �

Proof of Proposition 9. The result follows immediately, once we realise that A1 ≠∅⇔A∗1 ≠
∅, that f > 0⇔ f ∗ > 0, that λ f +µg ∈ A1⇔ λ f ∗+µg∗ ∈ A∗1 , and that A1 ⊆ A2⇔ A∗1 ⊆ A∗2 ,
for all f in ℒ(𝒳O) whose cylindrical extension is f ∗, all A1 and A2 in 𝒬(ℒ(𝒳O)) whose
cylindrical extensions are A∗1 and A∗2 , and all λ in µ in R such that (λ ,µ) > 0. �

Proof of Proposition 10. For the first statement, observe that indeed

margODK = { f ∈ℒ(𝒳O)∶ f ∈DK} = { f ∈ℒ(𝒳O)∶{ f} ∈K}
= { f ∈ℒ(𝒳O)∶{ f} ∈margOK} =DmargO K,

where the second and last equalities follow from Equation (5), and the third one follows
from Definition 10.

For the second statement, observe that

margOKD = {A ∈𝒬(ℒ(𝒳O))∶A ∈KD} = {A ∈𝒬(ℒ(𝒳O))∶A∩D ≠∅}
= {A ∈𝒬(ℒ(𝒳O))∶A∩margOD ≠∅}
= {A ∈𝒬(ℒ(𝒳O))∶A ∈KmargO D} =KmargO D ,

where the first equality follows from Definition 10 and the second and penultimate equalities
follow from Proposition 5.

We now turn to the last statement. By Theorem 6 we have that K =⋂{KD ∶D ∈D(K)}, im-
plying that A ∈K⇔ (∀D ∈D(K))A ∈KD , for any A in𝒬(ℒ(𝒳1∶n)). Therefore in particular,
for any A in 𝒬(ℒ(𝒳O)),

A ∈margOK⇔ A ∈K⇔ (∀D ∈D(K))A ∈KD

⇔ (∀D ∈D(K))A ∈margOKD

⇔ (∀D ∈D(K))A ∈KmargO D ⇔ A ∈⋂{KmargO D ∶D ∈D(K)},

where the first and third equivalences follow from Definition 10, and the fourth one fol-
lows from the already established second statement of this proposition. Therefore indeed
margOK =⋂{KmargO D ∶D ∈D(K)}. �
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Proof of Proposition 11. We will first show that any coherent set of desirable gamble
sets K′ on ℒ(𝒳1∶n) that marginalises to KO must be at least as informative as the set
ext1∶n(KO) given by Eq. (13). To establish this, since K′ marginalises to KO , note that
A ∈KO ⇔ A ∈K′, for all A in 𝒬(ℒ(𝒳O)). Therefore, in particular, A ∈KO ⇒ A ∈K′ for all
A in 𝒬(ℒ(𝒳O)), so KO ⊆K′. This implies that indeed ext1∶n(KO) =Rs(Posi(ℒs(𝒳1∶n)>0∪
KO)) ⊆Rs(Posi(ℒs(𝒳1∶n)>0∪K′)) =K′, where the final equality holds because K′ is coher-
ent.

So we already know that any coherent set of desirable gamble sets that marginalises to KO
must be at least as informative as ext1∶n(KO). It therefore suffices to prove that ext1∶n(KO)
is coherent and that it marginalises to KO . To show that ext1∶n(KO) =Rs(Posi(ℒs(𝒳1∶n)>0∪
𝒜1∶n

KO
)) is coherent, by Theorem 2 it suffices to show that KO is a consistent assessment—that

is, to show that ∅ ∉𝒜1∶n
KO

and {0} ∉ Posi(ℒs(𝒳1∶n)>0 ∪𝒜1∶n
KO
). That this is indeed the case

follows from the coherence of KO =𝒜1∶n
KO

.
The proof is therefore complete if we can show that margO(ext1∶n(KO)) = KO . Since

for any A in KO it is obvious that both A ∈ ext1∶n(KO) and A ∈ 𝒬(ℒ(𝒳O)), we see im-
mediately that KO ⊆ margO(ext1∶n(KO)), so we concentrate on proving the converse in-
clusion. Consider any A in margO(ext1∶n(KO)), meaning that both A ∈ 𝒬(ℒ(𝒳O)) and
A ∈ ext1∶n(KO). That A ∈ ext1∶n(KO) implies that B∖ℒ≤0 ⊆ A for some B in Posi(ℒs

>0∪KO).
Then there are m in N, A1, . . . , Am in ℒs

>0 ∪KO , and coefficients λ
f1∶m

1∶m > 0 for all f1∶m in

⨉m
k=1 Ak such that B = {∑m

k=1 λ
f1∶m

k fk∶ f1∶m ∈⨉m
k=1 Ak}. Without loss of generality, assume that

A1, . . . ,A` ∈KO and A`+1, . . . ,Am ∈ℒs
>0 for some ` in {0, . . . ,m}. Consider the special subset

P ∶= { f1∶m ∈⨉m
k=1 Ak∶λ f1∶m

1∶` = 0} of⨉m
k=1 Ak. If P ≠∅, then for every element g1∶m of P we have

that ∑m
k=1 λ

g1∶m
k gk > 0, so B ∩ℒ>0 ≠ ∅. Since B ∖ℒ≤0 ⊆ A, also A ∩ℒ>0(𝒳O) ≠ ∅, whence

A ∈ KO by coherence [more specifically, by Axioms K2 and K4]. Therefore, assume that
P =∅, and define the coefficients

µ
f1∶m

k ∶=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

λ
f1∶m

k if k ≤ `
0 if k ≥ `+1

for all f1∶m in ⨉m
k=1 Ak and k in {1, . . . ,m}. Because P = ∅, for every f1∶m in ⨉m

k=1 Ak we
have that µ

f1∶m
1∶` = λ

f1∶m
1∶` > 0. Also, for every f1∶m in ⨉m

k=1 Ak and k ≥ `+ 1, the coefficient

µ
f1∶m

k equals 0, so we identify µ
f1∶`

1∶` with µ
f1∶m

1∶` . Then every element of {∑m
k=1 µ

f1∶m
k fk∶ f1∶m ∈

⨉m
k=1 Ak} = {∑`

k=1 µ
f1∶`

k fk∶ f1∶` ∈⨉m
k=`+1 Ak} ∈ Posi(KO) =KO is dominated by an element of

B. Therefore, by Lemma 16 below B ∈KO , whence by coherence, indeed also A ∈KO . �

Lemma 16. Consider any coherent set of desirable gamble sets K and any gamble sets A
and B in 𝒬. If A ∈K and (∀ f ∈ A)(∃g ∈ B) f ≤ g, then B ∈K.

Proof. Let A ∶= { f1, . . . , fm} for some m in N, and denote the finite possibility space 𝒳 =
{x1, . . . ,x`} for some ` in N. Since (∀ f ∈ A)(∃g ∈ B) f ≤ g, we have that B is a superset of

B′ ∶= { f1+
`

∑
k=1

µk,1I{xk}
, . . . , fm+

`

∑
k=1

µk,mI{xk}
} = { f j +

`

∑
k=1

µk, jI{xk}
∶ j ∈ {1, . . . ,m}}

for some µk, j ≥ 0 for all k in {1, . . . ,`} and j in {1, . . . ,m}. Use the definition of the Posi
operator, with A1 ∶= {I{x1}

} ∈ K, . . . , A` ∶= {I{x`}} ∈ K, A`+1 ∶= A ∈ K, and for all f j
1∶`+1 ∶=
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(I{x1}
,I{x2}

, . . . ,I{x`}, f j) ∈⨉`+1
k=1 Ak, let λ

f j
1∶`+1

1∶`+1 ∶= (µ1, j,µ2, j, . . . ,µ`, j,1) > 0, to infer that

{
`+1

∑
k=1

λ
f j
1∶`+1

k f j
k ∶ f j

1∶`+1 ∈
`+1
⨉
k=1

Ak(︀ = { f j +
`

∑
k=1

µk, jI{xk}
∶ j ∈ {1, . . . ,m}} = B′

belongs to Posi(K). Because B ⊇ B′, we have that B ∈Rs(Posi(K)) by the definition of Rs.
But since K =Rs(Posi(K)) by coherence, we infer that indeed B ∈K. �

Proof of Proposition 12. Since we have seen in Proposition 11 that ext1∶n(KO) is the small-
est coherent set of desirable gamble sets that includes KO , we know by Theorem 6 that

ext1∶n(KO) =⋂{KD ∶D ∈D(𝒳1∶n) and KO ⊆KD}
=⋂{KD ∶D ∈D(𝒳1∶n) and KO ⊆margOKD =KmargO D} =⋂{KD ∶D ∈D∗}

where we used Definition 10 in the first equality, Proposition 10 in the second equality, and
defined D∗ ∶= {D ∈D(𝒳1∶n)∶KO ⊆margOKD} for brevity. The proof is finished if we show
that ⋂{KD ∶D ∈D∗} =⋂{KextD1∶nDO

∶DO ∈D(KO)}.

We will first show that⋂{KD ∶D ∈D∗}⊆⋂{KextD1∶nDO
∶DO ∈D(KO)}. To this end, consider

any DO in D(KO)—implying that KO ⊆KDO —, and we will show that KextD1∶nDO
∈ {KD ∶D ∈

D∗}. For notational ease, let D∗ ∶= extD1∶nDO ∈D(𝒳1∶n). By the marginalisation property of
the weak extension for sets of desirable gambles proved by De Cooman and Miranda [15,
Proposition 7], which implies that margOD∗ = DO , we have that margOKD∗ = KDO , and
hence, since KO ⊆ KDO , that KO ⊆ margOKD∗ . But this implies that D∗ belongs to D∗,
whence indeed KextD1∶nDO

=KD∗ ∈ {KD ∶D ∈D∗}.

To show, conversely, that ⋂{KextD1∶nDO
∶DO ∈ D(KO)} ⊆⋂{KD ∶D ∈D∗}, consider any A

in ⋂{KextD1∶nDO
∶DO ∈ D(KO)}, meaning that A∩extD1∶nDO ≠∅ for every DO in D(KO). We

need to show that then A ∈⋂{KD ∶D ∈ D∗}, so consider any D∗ in D∗. That D∗ belongs
to D∗ implies that KO ⊆ KmargO D∗ by the definition of D∗, and hence margOD∗ ∈ D(KO).
This implies that D′∩A ≠∅, where we defined D′ ∶= extD1∶n(margOD∗). But De Cooman and
Miranda [15, Proposition 7] have shown that D′ is the smallest coherent set of desirable
gambles on 𝒳1∶n that marginalises to margOD∗, and therefore D′ ⊆ D∗. This implies that
A ∩D∗ ≠ ∅, or, in other words, that A ∈ KD∗ . Since the choice of D∗ in D∗ was arbitrary,
this indeed implies that A ∈⋂{KD∗ ∶D∗ ∈D∗}. �

Proof of Proposition 13. Consider the following chain of equalities:

margO(Kn⧹︀EI) = {A ∈𝒬(ℒ(𝒳O))∶A ∈Kn⧹︀EI} = {A ∈𝒬(ℒ(𝒳O))∶IEI A ∈Kn}
= {A ∈𝒬(ℒ(𝒳O))∶IEI A ∈margI∪OKn}
= {A ∈𝒬(ℒ(𝒳O))∶A ∈ (margI∪OKn)⧹︀EI}
=margO((margI∪OKn)⧹︀EI),

where the third equality holds because IEI A is a set of gambles on 𝒳I∪O . �

Proof of Proposition 14. To show that (i) implies (ii), consider any A in𝒬(ℒ(𝒳O)) and EI
in 𝒫∅(𝒳I), and recall the following equivalences:

A ∈Kn⇔ A ∈margO(Kn⧹︀EI) by Definition 10 and (i)

⇔ A ∈Kn⧹︀EI by Definition 10
⇔ IEI A ∈Kn by Definition 8.
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To show that (ii) implies (i), consider any EI in 𝒫∅(𝒳I), and recall the following equalities:

margO(Kn⧹︀EI) = {A ∈𝒬(ℒ(𝒳O))∶A ∈Kn⧹︀EI}
= {A ∈𝒬(ℒ(𝒳O))∶IEI A ∈Kn} = {A ∈𝒬(ℒ(𝒳O))∶A ∈Kn} =margOKn,

where the first and last equalities follow from Definition 10, the second one from Definition 8,
and the third one from (ii). �

Proof of Theorem 15. We will first show that any coherent set of desirable gamble sets K′

on ℒ(𝒳1∶n) that marginalises to KO and that satisfies epistemic irrelevance of XI to XO
must be at least as informative as extirr1∶n(KO). To this end, consider any B in 𝒜irr

I→O . Then
B = IEI A for some EI in 𝒫∅(𝒳I) and A in KO . Since K′ marginalises to KO , infer that
A ∈K′. Furthermore, since K′ satisfies epistemic irrelevance of XI to XO , by Proposition 14
also B = IEI A ∈ K′. We conclude that B ∈𝒜irr

I→O ⇒ B ∈ K′⇔ B ∈ margI∪OK′, for every B
in 𝒬(ℒ(𝒳I∪O)), so 𝒜irr

I→O ⊆ margI∪OK′. This implies that Kirr
I∪O = Rs(Posi(ℒs(𝒳I∪O)>0 ∪

𝒜irr
I→O)) ⊆Rs(Posi(ℒs(𝒳I∪O)>0∪margI∪OK′)) =margI∪OK′, where the final equality fol-

lows from the fact that margI∪OK′ is coherent by Proposition 9. Therefore extirr1∶n(KO) =
ext1∶n(Kirr

I∪O) ⊆ ext1∶n(margI∪OK′) and since by Proposition 11 ext1∶n(margI∪OK′) is the
least informative coherent set of desirable gamble sets on ℒ(𝒳1∶n) that marginalises to
margI∪OK′, we have that ext1∶n(margI∪OK′) ⊆K′. Therefore indeed extirr1∶n(KO) ⊆K′.

The proof of the first statement is therefore complete if we could show that extirr1∶n(KO)
(i) is coherent, (ii) marginalises to KO , and (iii) satisfies epistemic irrelevance of XI to XO .

For (i), it suffices to show that ∅ ∉ 𝒜irr
I→O and {0} ∉ Kirr

I∪O = Rs(Posi(ℒs(𝒳I∪O)>0 ∪
𝒜irr

I→O)) (note that this second condition is equivalent to {0} ∉ Posi(ℒs(𝒳I∪O)>0∪𝒜irr
I→O)):

indeed, if this is the case, then by Theorem 2 Kirr
I∪O is a coherent set of desirable gamble

sets on ℒ(𝒳I∪O), and then by Proposition 11 extirr1∶n(KO) is a coherent set of desirable
gamble sets on ℒ(𝒳1∶n). So we will show that ∅ ∉𝒜irr

I→O and {0} ∉ Kirr
I∪O . That ∅ ∉𝒜irr

I→O
is clear from Equation (16) because KO is coherent. So we focus on proving that {0} ∉
Kirr

I∪O . Assume ex absurdo that {0} ∈Kirr
I∪O . By Lemma 17 below we would then infer that

{∑xI∈𝒳I
h(xI,⋅)∶h ∈ {0}} = {0} ∈KO , contradicting the coherence of KO . Therefore indeed

{0} ∉Kirr
I∪O .

For (ii), we need to show that A ∈ extirr1∶n(KO)⇔ A ∈ KO for any A in 𝒬(ℒ(𝒳O)). For
necessity, consider any A in 𝒬(ℒ(𝒳O)) and assume that A ∈ extirr1∶n(KO). By Lemma 17
then {∑xI∈𝒳I

h(xI,⋅)∶h ∈ A} ∈KO . Since A is a set of gambles on 𝒳O , we infer

{ ∑
xI∈𝒳I

h(xI,⋅)∶h ∈ A} = { ∑
xI∈𝒳I

h∶h ∈ A} = {⋃︀𝒳I ⋃︀h∶h ∈ A} = ⋃︀𝒳I ⋃︀A,

whence by coherence, indeed A ∈ KO . For sufficiency, consider any A in 𝒬(ℒ(𝒳O)) and
assume that A ∈ KO . Then A = I𝒳I A and 𝒳I ∈ 𝒫∅(𝒳I), so A ∈ 𝒜irr

I→O . Therefore indeed
A ∈ extirr1∶n(KO).

For (iii), by Proposition 14 it suffices to show that A ∈ extirr1∶n(KO)⇔ IEI A ∈ extirr1∶n(KO),
for all A in 𝒬(ℒ(𝒳O)) and EI in 𝒫∅(𝒳I). For necessity, consider any A in 𝒬(ℒ(𝒳O))
and any EI in 𝒫∅(𝒳I), and assume that A ∈ extirr1∶n(KO). Since we just have shown that
margOextirr1∶n(KO) =KO , this implies that A ∈KO , whence indeed IEI A ∈𝒜irr

I→O ⊆ extirr1∶n(KO).
For sufficiency, consider any A in 𝒬(ℒ(𝒳O)) and any EI in 𝒫∅(𝒳I), and assume that
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IEI A ∈ extirr1∶n(KO). Since by Proposition 11 extirr1∶n(KO) marginalises to Kirr
I∪O , this im-

plies that IEI A ∈ Kirr
I∪O . Use Lemma 17 to infer that then {∑xI∈𝒳I

h(xI,⋅)∶h ∈ IEI A} =
{∑xI∈𝒳I

IEI h(xI,⋅)∶h ∈A}= {⋃︀EI ⋃︀h∶h ∈A}= ⋃︀EI ⋃︀A ∈KO , whence by coherence indeed A ∈KO .
The second statement is a direct application of Proposition 12. �

Lemma 17. Consider any disjoint and non-empty subsets I and O of {1, . . . ,n}, and any
coherent set of desirable gamble sets KO on ℒ(𝒳O). Let 𝒜irr

I→O be given by Eq. (16). Then

A ∈Rs(Posi(ℒs(𝒳I∪O)>0∪𝒜irr
I→O))⇒ { ∑

xI∈𝒳I

h(xI,⋅)∶h ∈ A(︀ ∈KO ,

for all A in 𝒬(ℒ(𝒳I∪O)).

Proof. Consider any A in𝒬(ℒ(𝒳I∪O)) and assume that A ∈Rs(Posi(ℒs(𝒳I∪O)>0∪𝒜irr
I→O)).

Then by Eq. (3) B∖ℒ≤0 ⊆ A for some B in Posi(ℒs(𝒳I∪O)>0∪𝒜irr
I→O), implying that

B = {
m

∑
k=1

λ
f1∶m

k fk∶ f1∶m ∈
m
⨉
k=1

Ak}

for some m in N, A1, . . . , Am in ℒs(𝒳I∪O)>0∪𝒜irr
I→O , and coefficients λ

f1∶m
1∶m > 0 for all f1∶m

in ⨉m
k=1 Ak. Without loss of generality, assume that A1, . . . ,A` ∈𝒜irr

I→O and A`+1, . . . ,Am ∈
ℒs(𝒳I∪O)>0 for some ` in {0, . . . ,m}. Consider the special subset P ∶={ f1∶m ∈⨉m

k=1 Ak∶λ f1∶m
1∶` =

0} of ⨉m
k=1 Ak. If P ≠ ∅, then for every element g1∶m of P we have that ∑m

k=1 λ
g1∶m
k gk =

∑m
k=l+1 λ

g1∶m
k gk > 0, so B∩ℒ(𝒳I∪O)>0 ≠∅, and therefore also A∩ℒ(𝒳I∪O)>0 ≠∅, whence

{∑xI∈𝒳I
h(xI,⋅)∶h ∈ A} ⊇ {∑xI∈𝒳I

h(xI,⋅)∶h ∈ A∩ℒ(𝒳I∪O)>0} ∈KO , using Axiom K2. Ap-
plying Axiom K4, we deduce that {∑xI∈𝒳I

h(xI,⋅)∶h ∈ A} ∈KO . So we may assume without
loss of generality that P =∅, and we define the coefficients

µ
f1∶m

k ∶=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

λ
f1∶m

k if k ≤ `
0 if k ≥ `+1

for all f1∶m in ⨉m
k=1 Ak and k in {1, . . . ,m}. Because P =∅, for every f1∶m in ⨉m

k=1 Ak we have
that µ

f1∶m
1∶` = λ

f1∶m
1∶` > 0. The sets A`+1, . . . , Am are singletons containing a positive gamble, so

every f1∶m in ⨉m
k=1 Ak is completely determined by f1∶` in ⨉`

k=1 Ak. This lets us identify µ
f1∶m

1∶`
with µ

f1∶`
1∶` . Then every element of B′ ∶= {∑m

k=1 µ
f1∶m

k fk∶ f1∶m ∈⨉m
k=1 Ak} = {∑`

k=1 µ
f1∶`

k fk∶ f1∶` ∈
⨉`

k=1 Ak} is dominated by an element of B. For every k in {1, . . . ,`} the gamble set Ak

belongs to𝒜irr
I→O , so we may write Ak = IEk AO,k with Ek ∈𝒫∅(𝒳I) and AO,k ∈KO . Therefore

⋃︀Ak⋃︀ = ⋃︀AO,k⋃︀, and every fk in Ak can be uniquely written as fk = IEk gk with gk in AO,k. So
for every f1∶` in ⨉`

k=1 Ak there is a unique g1∶` in ⨉`
k=1 AO,k such that fk = IEk gk for every k

in {1, . . . ,`}. For every f1∶` in ⨉`
k=1 Ak and its corresponding unique g1∶` in ⨉`

k=1 AO,k, we
define µ

g1∶`
1∶` ∶= µ

f1∶`
1∶` . Therefore B′ = {∑`

k=1 µ
g1∶`
k IEk gk∶g1∶` ∈⨉`

k=1 AO,k}, and hence

{ ∑
xI∈𝒳I

h(xI,⋅)∶h ∈ B′(︀ = { ∑
xI∈𝒳I

`

∑
k=1

µ
g1∶`
k IEk gk(xI,⋅)∶g1∶` ∈

`

⨉
k=1

AO,k(︀

= {
`

∑
k=1

µ
g1∶`
k ⋃︀Ek⋃︀gk(xI,⋅)∶g1∶` ∈

`

⨉
k=1

AO,k(︀

belongs to Posi(KO) = KO , using Eq. (4). Since every element of B′ is dominated by an
element of B, we have that every element of {∑xI∈𝒳I

h(xI,⋅)∶h ∈ B′} is dominated by an
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element of {∑xI∈𝒳I
h(xI,⋅)∶h ∈ B}, so by Lemma 16 {∑xI∈𝒳I

h(xI,⋅)∶h ∈ B} ∈ KO . By K4

we have that also indeed {∑xI∈𝒳I
h(xI,⋅)∶h ∈ A} ∈KO . �
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