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Abstract. The law of iterated expectation tells us how to combine hierarch-

ical pieces of information when our uncertainty is modelled by means of prob-
ability measures. It has been extended to the imprecise case through Walley’s

marginal extension theorem for coherent lower previsions. In this paper, we

investigate the extent to which a similar result can be established for other
imprecise probability models that are either more general (choice functions)

or more particular (possibility measures, belief functions) than coherent lower

previsions. By doing this, we also establish links with other results established
in the literature in the context of imprecise versions of Jeffrey’s rule.
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1. Introduction

Consider two variables X1, X2 taking values in respective spaces Ω1, Ω2. Assume
that our uncertainty about the value that X1 takes can be modelled by means of
a probability measure P1 on Ω1 and that, for each ω1 ∈ Ω1, we have a conditional
probability measure P2(·|{ω1}) that models our uncertainty about X2 if we know
that the variable X1 has taken the value ω1. Then we can model our uncertainty
about the vector (X1, X2) by means of the concatenation of the two models, so that
we have for instance, if Ω1 and Ω2 are finite, that

P ({(ω1, ω2)}) = P1({ω1}) · P2({ω2}|{ω1});
and from the joint model on (X1, X2) we can obtain the marginal on X2. This is
an example of the law of total probability, which can also be expressed in terms of
expectations: for any function f : Ω1 × Ω2 → R, we have that

E(f) =
∑

ω1∈Ω1

P1({ω1})E2(f |{ω1}) = E1(E2(f |X1)) (1)

where E2(·|{ω1}) is the expectation operator associated with the probability meas-
ure P2(·|{ω1}). This would allow us to determine the expectation operator for the
variable X2, giving rise to the law of iterated expectation.

The above procedure eases the computation of the joint distribution of (X1, X2)
and is useful in contexts where the information is of a hierarchical nature. It is
thus relevant in the context of stochastic processes where a sequence of variables
X1, X2, . . . is observed. It can also be formulated more generally in contexts where
we have information conditional on the observation of some event B in a partition
B of the possibility space, as well as marginal information on the partition. And
finally, it is also formally linked to Jeffrey’s updating rule (Jeffrey, 1965, 1988),
which is of interest when we update the marginal information on our model while
keeping the conditional intact.
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In spite of these advantages, there will be scenarios where the available inform-
ation does not allow us to elicit a precise marginal or conditional probability meas-
ure. This may happen for instance when we have vague or ambiguous information,
if there is a conflict between the opinions of several experts or in the presence of
missing data. In order to deal more effectively with those situations, a number of al-
ternatives to probability measures have been proposed; these are nowadays usually
encompassed with the term imprecise probabilities (Augustin et al., 2014). They
include in particular belief functions (Shafer, 1976), possibility measures (Dubois
and Prade, 1988), sets of probability measures (Levi, 1980) or coherent lower pre-
visions (Walley, 1991). Some of these models appear under the name non-additive
or fuzzy measures in the literature.

Our goal in this paper is to determine the extent to which the law of iterated
expectation can be generalised to the case where the marginal and the conditional
models belong to some particular family of imprecise probability models. More
specifically, we shall investigate if it is possible to determine a joint model that
belongs to the same family and that is also compatible with the marginal and
conditional models. What we shall understand by compatibility will be key in the
mathematical developments in the paper. Note also that, unlike what is usually
done in the formulation of the law of iterated expectation for variables, we shall
focus on the global model, and not take the immediate step of marginalising it in
each of the variables.

Two important assumptions we shall consider throughout are the following: on
the one hand, we shall focus on finite possibility spaces. This will simplify in some
cases the mathematical developments, and in particular it will allow us to dispose
with considerations of conglomerability (Dubins, 1975) and with the distinction
between finitely and countably additive probability measures. Secondly, we shall
focus on the case where we have one marginal and one conditional model; neverthe-
less, most of our developments can be generalised to a finite number of hierarchical
conditional models.

Before we proceed, we should remark that we are not the first to tackle this
problem: it has been considered in the context of coherent lower previsions by Wal-
ley (1991). In his celebrated marginal extension theorem, he proved that there is a
smallest, or most conservative, joint coherent lower prevision that is coherent with
any given marginal and conditional coherent lower previsions. Moreover, this joint
lower prevision can be obtained as the lower envelope of the probability models de-
termined applying the law of iterated expectation to the precise probability models
that are compatible with the marginal and conditional lower previsions, respect-
ively. The marginal extension theorem was later generalised to a finite number
of variables by Miranda and de Cooman (2007) and to coherent sets of desirable
gambles by de Cooman and Hermans (2008). On the other hand, the problem has
also been considered for belief functions in a number of references (Ma et al., 2011;
Smets, 1993; Spies, 1994; Zhou and Cuzzolin, 2017; Zhou et al., 2014). However,
as we shall show, these references consider a relationship between the joint and the
conditional model that does not comply with coherence in general.

The paper is organised as follows: after giving some preliminary notions about
imprecise probabilities and introducing the problem in Section 2, we shall investig-
ate the generalisation of the law for possibility measures (Section 3), belief functions
(Section 4), distortion models (Section 5), sets of desirable gambles (Section 6) and
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choice functions (Section 7). Some additional discussion will be given in Section 8.
In order to ease the reading, we have gathered the proofs of the results in an Ap-
pendix.

A preliminary version of this paper was presented at the ISIPTA 2023 conference
(Miranda and Van Camp, 2023); the current paper includes additional results,
examples and discussion.

2. Imprecise probability models

Consider a finite possibility space Ω, and let us denote L(Ω) := {f : Ω → R}
the set of gambles on Ω1. A function P : K → R defined on a subset K of L
is called a lower prevision, and it may be understood as a model of a subject’s
behavioural dispositions; specifically, P (f) may be understood as the subject’s
supremum acceptable buying price for µ, in the sense that he considers desirable
the transaction f − µ for any µ < P (f). The rationality of these behavioural
dispositions leads to the notion of lower previsions that avoid sure loss and are
coherent.

A lower prevision P : L(Ω) → R is called a coherent lower prevision when it
satisfies

(C1) (∀f ∈ L(Ω)) P (f) ≥ min f .
(C2) (∀f ∈ L(Ω),∀λ > 0) P (λf) = λP (f).
(C3) (∀f, g ∈ L(Ω)) P (f + g) ≥ P (f) + P (g).

When it moreover satisfies condition (C3) with equality for any pair of gambles
f, g, it is called a linear prevision, and it corresponds to the expectation operator
with respect to a finitely additive probability.

Linear previsions can be used to characterise the coherence of a lower prevision
P with domain L(Ω): it holds that P is coherent if and only if it is the lower
envelope of its associated credal set, which is given by

M(P ) := {P linear prevision : P (f) ≥ P (f) ∀f ∈ L}, (2)

in the sense that
P (f) = min{P (f) : P ∈ M(P )}.

On the other hand, a weaker notion than coherence is that of avoiding sure loss: a
lower prevision P on L is said to avoid sure loss when the credal set it determines
by means of Eq. (2) is non-empty.

The above notions can be easily extended to lower previsions whose domain K
is a proper subset of L: in that case, we say that P is coherent when there exists
a coherent lower prevision on L that agrees with P on K; the smallest2 such lower
prevision is called the natural extension of P , and it is the lower envelope of

M(P ) := {P linear prevision : P (f) ≥ P (f) ∀f ∈ K}. (3)

We also say that a lower prevision P with domain K avoids sure loss when the
credal set it determines by means of Eq. (3) is non-empty.

1When it is clear what the possibility space Ω is, we shall sometimes simply use L to indic-
ate L(Ω).

2Throughout the paper, when we say that a lower prevision P is the smallest member of a
family to satisfy certain properties, we are using the order determined by pointwise dominance;

i.e., we mean that P ≤ Q for any other member of the same family with the same properties. On

the other hand, in the case of sets of desirable gambles the term ‘smallest’ will mean with respect
to the order determined by set inclusion.
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In this paper we shall consider two uncertainty models that are more general
than coherent lower previsions: coherent sets of desirable gambles and coherent
choice functions.

The first of these two models can be used to represent a subject’s binary prefer-
ence relations over the set of gambles L(Ω). If we denote by D the set of gambles
that a subject considers preferable over the status quo, this set is called a coher-
ent set of desirable gambles when it satisfies the following rationality conditions
(de Cooman and Quaeghebeur, 2012; Quaeghebeur, 2014; Seidenfeld et al., 1990;
Walley, 1991) for all f and g in L(Ω) and λ in R>0

D1. 0 /∈ D; [avoiding non-positivity]
D2. L>0 ⊆ D; [accepting partial gain]
D3. if f ∈ D then λf ∈ D; [scaling]
D4. if f, g ∈ D then f + g ∈ D. [combination]

In axiom D2, we use L>0 to denote the set of positive gambles: {f ∈ L : f ≥ 0, f ̸=
0}.

We shall denote by D(Ω), or simply D, the collection of all coherent3 sets of
desirable gambles on Ω. A coherent set of desirable gambles D induces a coherent
lower prevision by means of the formula

P (f) := sup{α ∈ R : f − α ∈ D}, (4)

and this allows to give the value P (f) a behavioural interpretation as the subject’s
supremum acceptable buying price for f . However, two different coherent sets
of desirable gambles D1 ̸= D2 may induce the same coherent lower prevision via
Eq. (4). Thus, coherent sets of desirable gambles are a more expressive model than
coherent lower previsions.

A set of desirable gambles D is an equivalent representation of a binary pref-
erence relation ≺ between gambles: g ≺ f ⇔ f − g ∈ D, for all gambles f
and g. This indicates a limitation of working with them: they can only cap-
ture beliefs based on binary preferences—preferences between two gambles. In
order to overcome this, Kadane et al. (2004) introduced imprecise-probabilistic
choice functions, which were further developed by Seidenfeld et al. (2010) and Van
Camp et. al. (2018). A choice function C identifies from any finite decision prob-
lem F ∈ Q(Ω) := {G ⊆ L(Ω): |G| ∈ N},4 the subset C(F) of admissible, or non-
rejected, gambles. Similarly, the corresponding rejection function R(F) := F \C(F)
identifies the rejected gambles from F. In order to make the connection with a
useful equivalent model in the following paragraph, we will impose compatibility
with the vector addition: f ∈ R(F) ⇔ f + g ∈ R(F + {g}), for all f, g ∈ L and
F ∈ Q, where we defined the addition G + G′ of sets of gambles G and G′ as
G +G′ := {f + g : f ∈ G, g ∈ G′}, for any G,G′ ⊆ L.

Choice functions may be equivalently represented by means of sets of desirable
gamble sets (De Bock and de Cooman, 2018; De Bock and de Cooman, 2019; de
Cooman, 2022). The idea is to lift the qualification ‘desirable’ from gambles to
finite sets of gambles F ∈ Q(Ω)—called ‘gamble sets (on Ω)’. A gamble set F
is called desirable when F contains a gamble that our subject prefers to 0, and

3Note that here the overline is not understood as a topological closure, but rather as a closure

with respect to the rationality axioms D1–D4.
4When it is clear what the possibility space Ω is, we shall sometimes simply use Q to indic-

ate Q(Ω).
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a set of desirable gamble sets on Ω As such, K generalises binary preferences: a
gamble set {f, g} may be desirable—an element of K—because f is desirable or g
is desirable—so either f or g is preferred to 0—without being able to identify which
one is. The set of all sets of desirable gamble sets will be denoted by K.

Sets of desirable gamble setsK are related to rejection functions R, and therefore
also to choice functions. Let F ⊖ f := (F \ {f}) − {f}. Then f ∈ R(F) ⇔ 0 ∈
R(F − {f}) ⇔ (∃g ∈ F ⊖ f) g is desirable ⇔ F ⊖ f ∈ K, so we see that R and K
are equivalent representations of the same information.

A set of desirable gamble sets K ⊆ Q is called coherent if for all F and G in Q,
all {λf,g , µf,g : f ∈ F, g ∈ G} ⊆ R, and all f in L:
K1. ∅ /∈ K;
K2. if F ∈ K then F \ {0} ∈ K;
K3. if f ∈ L>0 then {f} ∈ K;
K4. if F,G ∈ K and if, for all f in F and g in G, (λf,g , µf,g) > 05, then {λf,gf +

µf,gg : f ∈ F, g ∈ G} ∈ K;
K5. if F1 ∈ K and F1 ⊆ F2, then F2 ∈ K.

We collect all the coherent sets of desirable gamble sets on Ω in the collection K(Ω),
often simply denoted by K.

While coherent sets of desirable gambles and coherent sets of desirable gambles
sets are more expressive uncertainty models than coherent lower previsions, in this
paper we shall also consider particular cases of coherent lower previsions whose
domain are the indicator functions, IA, given by

IA(ω) =

{
1 if ω ∈ A

0 otherwise

for some A ⊆ Ω. Since there is clearly a one-to-one correspondence between the
sets {IA : A ⊆ Ω} and P(Ω), we shall sometimes use P (A) to denote P (IA). The re-
striction to P(Ω) of a coherent lower prevision is called a coherent lower probability.
As particular cases of coherent lower probabilities, we have the following:

• We say that P is 2-monotone when

(∀A,B ⊆ Ω) P (A ∪B) + P (A ∩B) ≥ P (A) + P (B).

• We say that P is a belief function when

(∀k ∈ N,∀A1, . . . , Ak ⊆ Ω) P
( k⋃
i=1

Ai

)
≥

∑
∅̸=I⊆{1,...,k}

(−1)|I|+1P
(⋂
i∈I

Ai

)
.

• We say that P is minitive when

(∀A,B ⊆ Ω) P (A ∩B) = min{P (A), P (B)}.
Any probability measure is a particular instance of a belief function, which is in
particular 2-monotone, which is in particular coherent. On the other hand, a min-
itive lower probability is also a belief function. We shall denote by PΩ, NΩ, BelΩ
and CΩ the classes of probability measures, minitive measures, belief functions and
coherent lower probabilities on Ω.

While a precise probability measure P on Ω uniquely determines its correspond-
ing expectation operator EP , such a one-to-one correspondence does not hold in

5For any sequence (µ1, . . . , µk) of real numbers, by (µ1, . . . , µk) > 0 we mean ‘µℓ ≥ 0 for all ℓ

in {1, . . . , k} and µℓ > 0 for some ℓ in {1, . . . , k}’.
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general for coherent lower probabilities: two different coherent lower previsions may
have the same restriction to indicators of events. In other words, coherent lower
previsions are a more expressive uncertainty model than coherent lower probabilit-
ies.

One way to have a one-to-one correspondence is to consider the property of
2-monotonicity for lower previsions: a lower prevision P satisfying

(∀f, g ∈ L(Ω))P (f ∨ g) + P (f ∧ g) ≥ P (f) + P (g), (5)

is called a 2-monotone lower prevision; in this equation, ∨ and ∧ denote the point-
wise maximum and point-wise minimum respectively, so

(f ∨ g)(ω) := max{f(ω), g(ω)} and (f ∧ g)(ω) := min{f(ω), g(ω)} for all ω in Ω.

Any 2-monotone lower prevision is coherent, and it determines a 2-monotone lower
probability as its restriction to events; conversely, a 2-monotone lower probability P
has a unique extension EP to L(Ω) satisfying Eq. (5) (see Walley (1981) and also (de

Cooman, Troffaes and Miranda, 2008, Corollary 10)): its Choquet integral, given
by

EP (f) = min f +

∫ max f

min f

P (f ≥ t)dt, (6)

that coincides moreover with the natural extension of P .
On the other hand, a coherent lower prevision is said to be minitive on gambles

when

(∀f, g ∈ L)P (f ∧ g) = min{P (f), P (g)}. (7)

In that case, it is also 2-monotone and its restriction to indicators of events is a
minitive lower probability; however, and in contradistinction with the situation for
2-monotonicity, the natural extension of a minitive measure need not be minitive
on gambles; it will only be so when it is {0, 1}-valued on events, as showed by de
Cooman and Miranda (2014, Prop. 7). As an example of a minitive lower prevision,
we have the vacuous lower prevision, given by P (f) = minω∈Ω f(ω) for every f ∈ L.

Figure 1 summarises the relationships between the different models we have
introduced; an arrow between two nodes means that the parent is a particular case
(and hence a less general model) of the child.

2.1. Conditional models. So far, we have considered unconditional or marginal
models. Next we shall discuss conditional models.

Consider a partition B of Ω, and for each B ∈ B, a coherent lower prevision
P (·|B) that models our uncertainty on the outcome of the experiment conditional
on the observation that this outcome belongs to the event B. The conditional lower
prevision P (·|B) is defined, for any gamble f on Ω, by

P (f |B) =
∑
B∈B

IBP (f |B). (8)

Here, we are using the notation IBg to denote the gamble given by

IBg(ω) =

{
g(ω) if ω ∈ B

0 otherwise.

In other words, IBg is a gamble that is called off unless we observe that the outcome
of the experiment belongs to B. Note that for any gamble f , P (f |B) belongs to
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Coherent choice functions

Coherent sets of desirable gambles

Coherent lower previsions

Coherent lower probabilities

2-monotone lower probabilities 2-monotone lower previsions

Probability measuresMinitive measures

Belief functions

Figure 1. Relationships between different models.

the class LB of B-measurable gambles, which are the gambles that are constant on
the elements of the partition B.

We then say that a conditional lower prevision is separately coherent when for
each B ∈ B, the lower prevision P (·|B) on L(Ω) is coherent6, and denote by C(·|B)
the set of separately coherent conditional lower previsions. Similarly, we shall
denote Bel(·|B) (resp., N(·|B), P(·|B)) the particular cases where the conditional
model is a belief function (resp., a minitive measure, a probability measure) for any
B ∈ B.

Likewise, we can consider a conditional set of desirable gambles D⌋B by putting
together coherent sets of desirable gamblesD⌋B for B ∈ B, whereD⌋B is a coherent
subset of L(B); and also a conditional coherent choice function C⌋B by putting
together a family of coherent choice functions C⌋B on L(B), one for each B.

2.2. Formulation of the problem. Assume now that for a given partition B of Ω
we have a marginal uncertainty model on B and that, for each B ∈ B, we consider
a conditional model on B. Then we may want to aggregate these two models into
some global uncertainty model on Ω. As we mentioned in the introduction, when the
marginal and conditional models are given by probability measures, it is immediate
to determine the joint model by means of the law of iterated expectation.

When the models are imprecise and are given by coherent lower previsions qP
on LB and P (·|B) on L(Ω), we must specify what entails the compatibility of the

output model P̂ with the input models. In the case of the marginal model, this is
not too controversial: we should require that

(∀f ∈ LB)P̂ (f) = qP (f). (9)

6While at first it may seem confusing that P (·|B) is defined on L(Ω) instead of L(B), the

reason for this is to have a common domain for all P (·|B) so as to be able to use Eq. (8). Note

also that it is a consequence of coherence nonetheless that P (f |B) = P (g|B) whenever IBf = IBg,
so only the values of a gamble on B matter for its conditional lower prevision on B. See Walley
(1991, Sect. 6.2) for more details.
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With respect to the conditional model, the extension of Bayes’ rule to the condi-
tional case means that P (f |B) should satisfy

P (IB(f − P (f |B))) = 0. (10)

In the finitary context we are considering in this paper, conditions (9) and (10)

are equivalent to the coherence of the global model with the marginal qP and the
conditional P (·|B). The interpretation of this condition is that the behavioural

implications of the supremum acceptable buying prices encompassed by qP and
P (·|B) should not lead to a sure loss, and also that they should not imply a raise
on the previously assessed supremum buying price for a gamble.

On the other hand, when P (B) > 0, there is only one value α∗ for which P (IB(f−
α∗)) = 0, and it can also be computed as

P (f |B) = inf{P (f |B) : P ≥ P}. (11)

We refer to Walley (1991, Ch. 6) and Miranda (2009) for more details about the
problem of updating coherent lower previsions.

From the considerations of coherence it follows the marginal extension theorem:

Theorem 1. (Walley, 1991) Consider a marginal coherent lower prevision qP on
LB and a separately coherent conditional lower prevision P (·|B) on L(Ω). The

smallest coherent lower prevision on L(Ω) that is coherent with qP , P (·|B) is

P̂ := qP (P (·|B)). (12)

That P̂ is the smallest coherent lower prevision that is coherent with qP , P (·|B)
means that there may be other coherent lower previsions satisfying Eqs. (9), (10);
these will encompass behavioural assessments that are not implied by those present

in qP , P (·|B) and the rationality requirements of coherence, which is something that
we may want to avoid if possible (but see also the discussion in the paragraphs
below). In particular, when the conditional model P (·|B) is precise, Eq. (12) gives
the unique coherent lower prevision on L(Ω) that is coherent with qP , P (·|B).

Assume now that the marginal qP and the conditional P (·|B) belong to some
particular subfamily of interest (belief functions, minitive measures, etcetera). We
may then wonder if:

(a) The marginal extension P̂ also belongs to that subfamily of interest;
(b) If it does not, if we can make a minimal correction so that it does.

In this second case, our correction shall always be in the form of a more informative
model. The idea here is that any desirability assessment present in the marginal
extension should be considered in any correction that is implemented; but we also
open the possibility of adding other desirability assessments that are not included
in the minimal implications modelled by the marginal extension. This leads to
the consideration, if needed, of inner approximations (Miranda et al., 2023) of the

marginal extension, i.e., coherent lower previsions P ′ ≥ P̂ .
In other words, the problem of determining a global model from marginal and

conditional pieces of information has two parts: first, we have the implications of
coherence, that lead us to considering the marginal extension as a minimal global
model that is compatible with the sources of information; and then we have the
structural assessment of this global model belonging to the family of interest. When
the marginal extension does not, we should make some correction, and, in order
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not to erase the implications of coherence, we may end up with a more informative
model. In that case, the behavioural assessments present in the resulting model
will not only be implied by coherence but also by its membership to the family of
interest.

In what follows, we shall analyse these problems (a) and (b) for the imprecise
probability models we have introduced earlier in this section. In the case of capa-

cities, we start from a coherent lower probability qP on P(B), the events that are
finite unions of elements from the partition B, and also assume that for each B ∈ B,
we have a coherent lower probability P (·|B) on P(Ω). Then we can consider their

respective natural extensions qE on LB and E(·|B) on L(Ω).
We shall denote byM(qP , P (·|B)), or by Ê if no confusion is possible, themarginal

extension of qE and E(·|B), given by

Ê = qE(E(·|B)). (13)

The credal set associated with Ê is given in the following proposition in the case
when all conditioning events have strictly positive lower probability.

Proposition 2. If qP (B) > 0 for every B ∈ B, then

M(Ê) = {P : (∀A ∈ P(B))P (A) ≥ P (A) and

(∀A′ ⊆ Ω, B ∈ B)P (A′|B) ≥ P (A′|B)}.

Now, let H be a subfamily of coherent lower probabilities, and assume that qP
and P (·|B) belong to H for every B ∈ B. Considering our earlier discussion, we

look for the joint models P̂ on P(Ω) such that

(TP1) P̂ (A) ≥ qP (A) for every A ∈ P(B); [agreeing on B]
(TP2) P̂ (A′|B) ≥ P (A′|B) for every B ∈ B such that P̂ (B) > 0 and every A′ ⊆ Ω;

[rigidity]

(TP3) P̂ ∈ H, [closure]

and in particular, for the smallest such model, if it exists.

Trivially, if the marginal extension Ê belongs to H, then it is the smallest model
satisfying conditions (TP1)–(TP3) above; however, it is not hard to see that prop-
erties such as complete monotonicity are not generally preserved by marginal ex-
tension:

Example 1. Let Ω = {ω1, . . . , ω8}, B = {ω1, . . . , ω4} and the partition B =
{B,Bc}. Let P (·|B) the precise prevision associated with (0.3, 0.15, 0.15, 0.4), and
P (·|Bc) the precise prevision associated with (0.2, 0.25, 0.25, 0.3). Consider on the

other hand the vacuous lower probability qP on {B,Bc}, given by qP (B) = qP (Bc) =

0, qP (Ω) = 1. Given A1 = {ω1, ω2, ω5, ω6} and A2 = {ω1, ω3, ω5, ω7}, we get:

• P (A1|B) = 0.45 = P (A1|Bc) ⇒ Ê(A1) = 0.45;

• P (A2|B) = 0.45 = P (A2|Bc) ⇒ Ê(A2) = 0.45;

• P (A1 ∪A2|B) = 0.6, P (A1 ∪A2|Bc) = 0.7 ⇒ Ê(A1 ∪A2) = 0.6;

• P (A1 ∩A2|B) = 0.3, P (A1 ∩A2|Bc) = 0.2 ⇒ Ê(A1 ∩A2) = 0.2;

This implies that Ê(A1 ∪A2)+ Ê(A1 ∩A2) = 0.8 < 0.9 = Ê(A1)+ Ê(A2), whence

Ê is not 2-monotone. ♢

On the other hand, any model satisfying conditions (TP1)–(TP3) is an inner
approximation of the marginal extension:
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Proposition 3. Let P̂ ∈ H be a coherent lower prevision. Then P̂ satisfies condi-
tions (TP1) and (TP2) if and only if it is an inner approximation of the marginal

extension qE(E(·|B)).
In next sections, we shall consider a number of imprecise probability models

H and look for an aggregation procedure T that satisfies condition (TP1)–(TP3).
Specifically, we shall study in which cases the marginal extension M(P , P (·|B))
satisfies these three conditions, and, if it does not, whether it is possible (a) to
characterise for which cases of P , P (·|B) it does; and (b) to determine a unique inner
approximation of M(P , P (·|B)) satisfying (TP1)–(TP3). We will consider first of
all some subfamilies of coherent lower probabilities: minitive measures (Section 3),
belief functions (Section 4) and distortion models (Section 5). In the second half of
the paper, we will investigate if the marginal extension theorem can be generalised
to coherent sets of desirable gambles (Section 6) or choice functions (Section 7).
The formulation of the rule in those two cases will require us to specify how to
derive a conditional model from an unconditional one, generalising Eq. (10) to
those contexts; details will be given in the corresponding sections.

3. Minitive Models

We begin by considering the class of minitive measures, which are those coherent
lower probabilities satisfying P (A1 ∩A2) = min{P (A1), P (A2)} for all A1, A2 ⊆ Ω.
The conjugate upper probability, given by P (A) = 1 − P (Ac) for every A ⊆ Ω is
called a maxitive or possibility measure.

The law of iterated expectation has been investigated in the context of possibility
measures by Benferhat et al. (2011); the main difference lies in the use of a condi-
tioning rule that differs from the Generalised Bayes Rule (in the case of Benferhat
et al. (2011), the product- and min-based rules).

As we mentioned in Section 2, minitive measures P are a particular case of belief
functions; as a consequence, their natural extension to L(Ω) is given by Eq. (6).

However, given minitive measures qP on P(B) and P (·|B) on P(Ω) for each B ∈ B,
the coherent lower previsions qE on L(B) and E(·|B) defined by natural extension
need not be minitive: as showed by de Cooman and Miranda (2014, Prop. 7), this
is only the case then the minitive measures are {0, 1}-valued on events, and in that
case they are associated with filters of subsets of the possibility space.

Let Ê be the marginal extension of qE,E(·|B). The following result gives sufficient

conditions for Ê to be minitive on gambles, i.e., for it to satisfy Eq. (7), and also

for Ê to be minitive on events.

Proposition 4. Consider P ∈ NB, P (·|B) ∈ N(·|B) and let qE,E(·|B) be their natural
extensions to LB,L(Ω). Let Ê be given by Eq. (13).

(1) If qE,E(·|B) are minitive on gambles, then so is Ê .

(2) If either qE or E(·|B) is minitive on gambles, then Ê is minitive on events.

(3) If both qE,E(·|B) are minitive on events but not on gambles, then Ê may not
be minitive on events.

The reasoning in the proof of the last item, that may be found in the Appendix,

allows us to build examples where both qE,E(·|B) are not minitive on gambles and

yet Ê is minitive on events. In other words, the sufficient condition in the second
item of Proposition 4 is not necessary.
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Example 2. Consider Ω = {a, b, c, d}, B = {a, b} and B = {B,Bc}. Let our mar-

ginal lower probability be given by qP (B) = 0.5, qP (Bc) = 0; it is minitive on events
(any coherent lower probability on a binary space is) but not on gambles, because
it is not 0-1-valued. Consider next the conditional lower previsions P (·|B), P (·|Bc)
given by P ({a}|B) = 1, P ({b}|B) = 0 and P ({c}|Bc) = 0, P ({d}|Bc) = 0.5. Then

it can be checked that M(P , P (·|B)) determines the following lower probability Ê :

A Ê(A)
{a} 0.5
{b} 0
{c} 0
{d} 0
{a, b} 0.5
{a, c} 0.5
{a, d} 0.75
{b, c} 0
{b, d} 0
{c, d} 0
{a, b, c} 0.5
{a, b, d} 0.75
{a, c, d} 1
{b, c, d} 0
{a, b, c, d} 1

It follows that this lower probability is minitive on events. ♢

On the other hand, it may also happen that Ê is minitive on gambles even if
E(·|B) is only minitive on events (i.e., not {0, 1}-valued); a sufficient condition
for this is, after denoting EB := {B ∈ B : P (·|B) not minitive on gambles}, that
qE(
⋃

B∈EB
B) = 0. However, it is a consequence of (de Cooman and Miranda, 2014,

Prop. 6) that the following statements are equivalent:

(a) P (·|B) is {0, 1}-valued on events for every B ∈ B;
(b) qP (P (·|B)) is minitive on gambles for every coherent lower prevision qP that is

minitive on gambles.

When Ê is not minitive on events, it is not hard to find the smallest coherent
lower probability that dominates it and is minitive, provided at least one such
inner approximation exists. This is a consequence of the following result. Its proof
is immediate and therefore omitted.

Proposition 5. Let P be a coherent lower probability on P(Ω). Then there exists
a minitive lower probability P ′ on P(Ω) satisfying P ′(A) ≥ P (A) for every A ⊆ Ω
if and only if maxω∈Ω P ({ω}) = 1. In that case, the smallest such minitive lower
probability is given by

P ′(A) = 1−max
ω/∈A

P ({ω}). (14)

We may summarise the results in this section as follows:

• If the class C is that of coherent lower previsions that are minitive on gambles,
then the marginal extension is the smallest model satisfying conditions (TP1)–
(TP3).
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• If the class C is that of coherent lower previsions that are minitive on events, then
the marginal extension is the smallest model satisfying conditions (TP1)–(TP3)
if either the marginal or the conditional models are also minitive on gambles;
otherwise, the smallest such model is determined by Eq. (14).

Therefore, in this case we give a full answer to the questions stated at the end of
Section 2.

4. Belief functions

Next we consider the possible extensions of the law for belief functions. This
problem, be it under the guise of the law of total probability or under Jeffrey’s
rule, has already been investigated in the context of belief functions in (Ma et al.,
2011; Smets, 1993; Spies, 1994; Zhou and Cuzzolin, 2017; Zhou et al., 2014). In
particular, the combination of marginal and conditional belief functions has been
considered in the context of decision theory under objective ambiguity (Petturiti
and Vantaggi, 2020, 2022b) and of statistical matching (Petturiti and Vantaggi,
2022a).

One important difference with our approach is that this literature uses a differ-
ent conditioning rule than ours: while we use the GBR to obtain a conditional
model P (·|B), works in the framework of belief functions typically use Demp-
ster’s conditioning (Smets, 1993; Zhou and Cuzzolin, 2017), coarsening condition-
ing (Zhou et al., 2014) or geometric conditioning (Smets, 1993). However, these
rules do not guarantee coherence between the joint and the conditional models,
which lies at the basis of our approach. This is a consequence of the following
result:

Proposition 6. Let B be a partition of Ω and consider an aggregation procedure

T : BelB × Bel(·|B) → BelΩ.

If T satisfies the following two conditions:

(i) Given P 1
B ≤ P 2

B ∈ BelB and P 1(·|B) ≤ P 2(·|B) ∈ Bel(·|B) it holds that
T (P 1

B, P
1(·|B)) ≤ T (P 2

B, P
2(·|B)); [monotonicity]

(ii) If PB ∈ PB and P (·|B) ∈ P(·|B), then T (PB, P (·|B)) = PB(P (·|B)) [exten-
sion]

then T ≤ M . As a consequence, whenever T (P , P (·|B)) does not coincide with
M(P , P (·|B)) it follows that T (P , P (·|B)) is not coherent with P , P (·|B).

Note that conditions (i) and (ii) in Proposition 6 are very mild and apply to ba-
sically any aggregation procedure for belief functions in the literature: they simply
entail that the output of the aggregation procedure becomes more imprecise when
its inputs do, and also that it is truly a generalisation of the law of iterated ex-
pectation. Proposition 6 then means that these procedures will produce an outer
approximation of the marginal extension in general, and as a consequence that
they will not satisfy either condition (TP1) or (TP2), due to Theorem 1. Usually
the aggregation procedure is designed to satisfy (TP1) (agreement with the mar-
ginal), and what will happen is that the conditional model it determines by means
of GBR will be less informative then the one we started with, due to the use in
these procedures of a different conditioning rule. This is illustrated in the following
example:
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Example 3. Let us consider Ω1 = {a, b},Ω2 = {c, d} and the belief functions
Bel,Bel(·|Ω1) given by7

Bel({a}) = 0.2, Bel({b}) = 0.6, Bel({a, b}) = 1

Bel({c}|{a}) = 0.3, Bel({d}|{a}) = 0.5, Bel({c, d}|{a}) = 1

Bel({c}|{b}) = 0.1, Bel({d}|{b}) = 0.4, Bel({c, d}|{b}) = 1

Let T denote the aggregation procedure described by Zhou and Cuzzolin (2017),
that determines a belief function on Ω1 × Ω2 through the following steps:

• First, a conditional embedding of Bel(·|{a}), Bel(·|{b}) is made, giving rise

to two belief functions P a, P b.
• Next, we combine P a and P b via Dempster’s rule of combination and obtain
a belief function P .

• In a third step, we take the vacuous extension of Bel to Ω1×Ω2, producing
another belief function P ′.

• And finally we define T (Bel,Bel(·|Ω1)) as Dempster’s combination of P
and P ′.

In order to simplify the notation, let x1 = {(a, c)}, x2 = {(a, d)}, x3 = {(b, c)}, x4 =
{(b, d)}. Then it follows that T (Bel,Bel(·|Ω1)) and M(Bel,Bel(·|Ω1)) are given
by:

A T(A) M(A)
{x1} 0.06 0.06
{x2} 0.1 0.1
{x3} 0.06 0.06
{x4} 0.24 0.24

{x1, x2} 0.2 0.2
{x1, x3} 0.126 0.14
{x1, x4} 0.324 0.36
{x2, x3} 0.17 0.18
{x2, x4} 0.38 0.42
{x3, x4} 0.6 0.6

{x1, x2, x3} 0.28 0.28
{x1, x2, x4} 0.52 0.52
{x1, x3, x4} 0.72 0.72
{x2, x3, x4} 0.8 0.8

{x1, x2, x3, x4} 1 1

We observe that T (A) < M(A) for A = {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4} and as
a consequence that T is not coherent with Bel,Bel(·|Ω1). ♢

We also see in Example 3 that the lower and upper probabilities of the singletons
coincide in both the model by Zhou and Cuzzolin and in the marginal extension;
this leads us to wonder whether this equality holds for arbitrary belief functions,
and as a consequence whether the probability intervals induced by both models
agree. A deeper study into this matter is left as future research.

7We are making a small abuse of notation here, in that we are using Bel({c}|{a}) to denote

what should be Bel(IΩ1×{c}|{a} × Ω2), and similarly for other conditional lower probabilities.

The same comment applies to Examples 4 and 5 later on.



14 ENRIQUE MIRANDA AND ARTHUR VAN CAMP

Our proposal thus in this paper is to use if possible the marginal extension,
that will correspond to the lower envelope of the probability measures that can
be obtained, using the law of iterated expectation, as a combination of marginal
and conditional probability measures that are compatible with BelB, Bel(·|B). We
would thus be making tractable the approach already discussed by Wagner (1992).

As Example 1 shows, if we apply M to a marginal and a conditional belief
function the aggregated model may not be a belief function. In those cases, we
may use the results by Miranda et al. (2023) and look for inner approximations by
means of a linear optimization problem. These look for the model that minimises
the distance defined by Baroni and Vicig (2005) with respect to the original model:

d(P ,Q) =
∑
A⊆Ω

|P (A)−Q(A)|. (15)

As our next example shows, this approach does not give a unique solution in
general:

Example 4. Let us consider Ω1 = {a, b},Ω2 = {c, d} and the belief functions
Bel,Bel(·|Ω1) given by

Bel({a}) = 0, Bel({b}) = 0, Bel({a, b}) = 1

Bel({c}|{a}) = 0.4, Bel({d}|{a}) = 0.4, Bel({c, d}|{a}) = 1

Bel({c}|{b}) = 0.4, Bel({d}|{b}) = 0.4, Bel({c, d}|{b}) = 1

Then M(Bel,Bel(·|Ω1)) is given in the following table:

A M(A) Bel1(A) Bel2(A)
{x1} 0 0.2 0
{x2} 0 0.4 0
{x3} 0 0 0.4
{x4} 0 0 0.2

{x1, x2} 0 0.6 0
{x1, x3} 0.4 0.4 0.4
{x1, x4} 0.4 0.4 0.4
{x2, x3} 0.4 0.4 0.4
{x2, x4} 0.4 0.4 0.4
{x3, x4} 0 0 0.6

{x1, x2, x3} 0.4 0.8 0.48
{x1, x2, x4} 0.4 0.8 0.6
{x1, x3, x4} 0.4 0.6 0.8
{x2, x3, x4} 0.4 0.4 0.8

{x1, x2, x3, x4} 1 1 1

Then it can be checked that both Bel1, Bel2 are two different inner approximations
in BelΩ1×Ω2

that minimise the distance defined by Eq. (15) with respect to M . ♢

Nevertheless, it is possible to obtain a unique solution by means of quadratic
programming, applying (Miranda et al., 2023, Prop. 3(ii)).

On the other hand, the marginal extension produces a belief function when the
conditional model is vacuous, as showed in the following proposition:
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Proposition 7. Let B be a partition of Ω; consider a belief function BelB in BelB
and for each B ∈ B let AB ⊆ B and let Bel(·|B) be the vacuous belief function on
AB, given by

Bel(C|B) =

{
1 if AB ⊆ C

0 otherwise.

Denote by Bel(·|B) the conditional belief function determined by Bel(·|B), B ∈ B.
Then M(BelB, Bel(·|B)) is also a belief function on events.

This proposition shows that we can use the marginal extension in one of the con-
texts where belief functions arise naturally: random sets (Dempster, 1967; Nguyen,
1978).

5. Distortion Models

Next we consider the family of distortion models. These refer to those imprecise
probability models that originate by transforming a probability measure P0 using a
distortion function and for some distorting factor δ. They are particularly relevant
in the context of robust statistics (Huber, 1981). There are several models within
this family, such as the pari-mutuel, linear-vacuous or Kolmogorov models. We
refer to Montes et al. (2020a,b) for a comparison of the properties of some of the
most important distortion models. A study of the connection between Jeffrey’s rule
and convex and bi-elastic distortion models was made by Škulj (2006). Here, we
shall focus on the linear-vacuous and pari-mutuel models.

5.1. Linear-Vacuous Mixture. We begin our study with the family of linear-
vacuous mixtures, also referred to as contamination models in the literature.

Definition 1. Let P0 be a probability measure on Ω and consider a distortion factor
δ ∈ (0, 1). The associated linear-vacuous mixture is given by the lower probability

P (A) =

{
(1− δ)P0(A) if A ̸= Ω

1 otherwise
for all A ⊆ Ω.

We say then that P is determined by (P0, δ).

Linear-vacuous (LV) mixtures have been studied in the context of robust statist-
ics (Huber, 1981): the set of probability measures that dominate P are the convex
combinations of P0 with any other probability measure Q, with respective weights
(1 − δ) and δ. They have also been applied in the context of dynamic portfo-
lio choice by Petturiti and Vantaggi (2024). We shall denote by CLV the class of
linear-vacuous mixtures.

It follows from the definition above that the lower probability P associated with
a linear-vacuous mixture is always additive on proper subsets of Ω: given A ⊂ Ω,
it holds that

P (A) =
∑
ω∈A

P ({ω}). (16)

On the other hand, the natural extension from events to gambles of an LV mixture
P determined by (P 0, δ) is given by

P (f) = (1− δ)P0(f) + δmin f for all f ∈ L.
With these two properties we can establish necessary and sufficient conditions for
the existence of an LV mixture that is coherent with the marginal and conditional
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models, provided no zero lower probabilities are involved. In that case, it follows
from the introduction to Section 2.2 that this is the smallest LV model satisfying
conditions (TP1)–(TP3).

Proposition 8. Consider an LV mixture qE on L(B) determined by (PB, δB) and,
for each B ∈ B, let E(·|B) be an LV mixture on L(B) determined by (PB , δB).

Assume that qE(B) > 0 for every B ∈ B, and that E(A|B) > 0 for every B ∈ B
and non-empty A ⊆ B. Let P be the LV mixture on Ω determined by (P, δ). Then
the following are equivalent:

(i) P is coherent with qE,E(·|B).
(ii) P (f) = qE(f) for every f ∈ L(B) and P (IB(I{ω} − E({ω}|B))) = 0 for every

B ∈ B and ω ∈ B.
(iii) δ = δB, P ({ω}) = E({ω}|B)(δ+P (B))

1−δ and δB = δ+δP (B)
δ+P (B) for every B ∈ B.

It also follows from this proposition that there will be situations where there
is no LV mixture inducing the same marginal and conditional models we started
with, taking into account the necessary relationship between the distortion factors
δB, δB , B ∈ B established in the third item.

Interestingly, the marginal extension M(P , P (·|B)) of two LV mixtures does
never belong to the class CLV :

Proposition 9. Let P be an LV mixture on L(B) determined by (PB, δB), and for
every B ∈ B let P (·|B) be an LV mixture on Ω determined by (PB , δB). Then the

marginal extension Ê = qE(E(·|B)) does not belong to CLV.

Taking into account Prop. 3, we may consider then the inner approximations of

the marginal extension Ê in the class of LV mixtures. As we mentioned before,
inner approximations of coherent lower probabilities were investigated by Miranda
et al. (2023); in the case of distortion models, they are moreover linked with the
notion of centroids of credal sets (Miranda and Montes, 2023). In (Miranda et al.,
2023, Sect. 4.1) it was established that the optimal inner approximations, in that
they minimise the distance defined by Eq. (15) with respect to the original model,
can be determined by considering the maximum value of δ such that the lower

probability defined by Q(A) := P (A)
1−δ for all A ⊂ Ω, and Q(Ω) := 1, avoids sure

loss. This result is applicable when the original lower probability is non-zero on
any non-trivial event, which is also an assumption in our Propositions 2 and 8.

A word of caution here, though: the set of inner approximations of the coherent

lower prevision Ê does not coincide with the set of inner approximations of the

coherent lower probability that we obtain by restricting Ê to events. The reason is

that Ê will not be in general the natural extension of the coherent lower probability
that is its restriction to events, as the following example shows:

Example 5. Consider Ω = Ω1 × Ω2, where Ω1 = {a, b},Ω2 = {c, d} and let P0 be
the probability measure with mass function P0({(a, c)}) = 0.15, P0({(a, d)}) = 0.35,
P0({(b, c)}) = 0.3 and P0({(b, d)}) = 0.2. Consider δ = 0.1 and consider the
marginal and conditional LV models P (·|Ω1) and PΩ1

it determines, that satisfy
P ({a}) = P ({b}) = 0.45, P ({c}|{a}) = 0.27, P ({d}|{a}) = 0.63, P ({c}|{b}) =

0.54, P ({d}|{b}) = 0.36. Given the marginal extension Ê of these models, its
restriction to events satisfies, letting x1 = {(a, c)}, x2 = {(a, d)}, x3 = {(b, c)}, x4 =
{(b, d)}:
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A Ê(A)
{x1} 0.1215
{x2} 0.2835
{x3} 0.243
{x4} 0.162

{x1, x2} 0.45
{x1, x3} 0.3915
{x1, x4} 0.3105
{x2, x3} 0.5805
{x2, x4} 0.4815
{x3, x4} 0.45

{x1, x2, x3} 0.747
{x1, x2, x4} 0.648
{x1, x3, x4} 0.5985
{x2, x3, x4} 0.7965

{x1, x2, x3, x4} 1

Then we observe that the probability measure P1 with mass function

P1({(a, c)}) = P1({(b, d)}) = 0.2, P1({(a, d)}) = P1({(b, c)}) = 0.3

satisfies P1(A) ≥ Ê(A) for all A. However, it does not belong to M(Ê), because
for instance P1({d}|{a}) = 0.6 < P ({d}|{a}). ♢

This means that if our goal is to inner approximate the coherent lower prevision

Ê the results by Miranda et al. (2023) are not immediately applicable, and should be
generalised appropriately. We conjecture that there will not be in general a unique

optimal inner approximation of Ê in the class of LV mixtures. Interestingly, this
issue does not arise if we considered outer approximations of the coherent lower

prevision Ê ; see (Montes et al., 2018, Sect. 6) for more details.
We also deduce from Proposition 8 that in some cases there will be a LV mixture

that is coherent with P , P (·|B); this model will be an inner approximation of the

marginal extension Ê , and in the conditions of the proposition it will induce the
same marginal and conditional; thus, in those cases there will be a unique solution
to our problem. When the conditions in Proposition 8 do not hold, we should

look for a/the smallest inner approximation of Ê in the family CLV , and this inner
approximation will in general induce marginal and conditional models that are more
informative than the ones we started with.

5.2. Pari-Mutuel Model. The second distortion model we consider in this paper
is the pari-mutuel model (PMM) (Walley, 1991). It is usually formulated in terms
of its upper probability.

Definition 2. Given a probability measure P0 and a distortion factor δ > 0, the
associated pari-mutuel model is given by P (A) = min{1, (1 + δ)P0(A)} for every
A ⊆ Ω.

We shall denote by CPMM the family of pari-mutuel models, and we refer to
(Montes et al., 2019; Pelessoni et al., 2010) for a study of their mathematical prop-
erties. It follows from the definition above that any pari-mutuel model P satisfies



18 ENRIQUE MIRANDA AND ARTHUR VAN CAMP

the following additivity property:

P (A) < 1 ⇒ P (A) =
∑
ω∈A

P ({ω}).

We begin by showing that, in contradistinction with LV mixtures, given a mar-
ginal and a conditional pari-mutuel model, there is never a PMM that is coherent
with both of them.

Proposition 10. Consider a PMM PB on L(B) determined by (P0, δB) and for
each B ∈ B let P (·|B) be a PMM on L(B) determined by (PB , δ). Assume that
PB(A) < 1 for every A ⊂ Ω and P (A|B) < 1 for every B ∈ B and A ⊆ B. Then
there is no PMM P on L(Ω) that is coherent with PB, P (·|B).

Again, we should then look at the inner approximations of the marginal extension
in order to find a suitable formulation of the law for PMMs; we expect that the
results in (Miranda et al., 2023, Sect. 4.2) should be of interest, provided they are
suitably extended from coherent lower probabilities to coherent lower previsions. If
we focus on the restriction to events, we can see that there may be more than one
optimal inner approximation:

Example 6. Consider the same marginal and conditional lower probabilities as
in Example 4. Since they are defined on binary spaces, they are particular cases
of pari-mutuel models. The conjugate upper probability of the marginal extension
M(Bel,Bel(·|Ω1)) is given in the following table:

A M(A) P 1(A) P 2(A)
{x1} 0.6 0.3 0.36
{x2} 0.6 0.3 0.36
{x3} 0.6 0.3 0.24
{x4} 0.6 0.3 0.24

{x1, x2} 1 0.6 0.72
{x1, x3} 0.6 0.6 0.6
{x1, x4} 0.6 0.6 0.6
{x2, x3} 0.6 0.6 0.6
{x2, x4} 0.6 0.6 0.6
{x3, x4} 1 0.6 0.48

{x1, x2, x3} 1 0.9 0.96
{x1, x2, x4} 1 0.9 0.96
{x1, x3, x4} 1 0.9 0.84
{x2, x3, x4} 1 0.9 0.84

{x1, x2, x3, x4} 1 1 1

Then it can be checked that both P 1, P 2 are two different pari-mutuel models that
minimise the distance defined by Eq. (15) with respect to the original model; they
are determined by δ = 0.2 and the mass functions P 1

0 = (0.25, 0.25, 0.25, 0.25) and
P 2
0 = (0.3, 0.3, 0.2, 0.2), respectively. ♢

6. The marginal extension theorem for Sets of Desirable Gambles

We begin now with the second part of this paper, where we look at the formu-
lation of the marginal extension theorem for imprecise probability models that are
more general than coherent lower previsions: coherent sets of desirable gambles
and coherent choice functions. In this section, we review the marginal extension
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theorem (de Cooman and Hermans, 2008, Thm. 3) for sets of desirable gambles,
and show how it implies Eq. (1). We will at the same time establish some of the
notation we will need later in Section 7.

Just as we did for the precise case, we consider an initial coherent set of desirable

gambles qD on B, and a conditional coherent set of desirable gambles D⌋B, and will

look for a coherent set of desirable gambles D̂ on Ω that extends both of them, in

the sense that D̂ agrees on B with qD, and is rigid in that it agrees with D⌋B about
its conditional information. Before we can start this, we must look for a suitable
reformulation of conditions (TP1) and (TP2). In order to do so, we will need to be
able to relate a set of desirable gambles on Ω with one on B. To this end, we will use
the simplifying device of equating a gamble f on B with its cylindrical extension f⋆

on Ω, given by:

f⋆(ω) := f(B) for the (unique) B in B such that ω ∈ B

for any ω in Ω. Our not notationally distinguishing between f and its cylindrical

extension f⋆ will mostly be harmless for the reader. As qD consists of gambles on

B, using this device we may interpret qD as a subset of LB.
We are now in a position to formulate (TP1) (agreeing on B) in this context:

(∀f ∈ qD)f ∈ D̂ or, in other words, qD ⊆ D̂.

In words, “agreeing on B” means that we should preserve all the assessments about

B made by qD.
In order to formulate (TP2), we need to explain how to condition a coherent set

of desirable gambles. Given a set F of gambles on B, we let IBF := {IBf : f ∈ F}
be a set of gambles on Ω whose elements agree with the elements of F on B, and are
0 elsewhere. If we consider then a coherent set of desirable gambles D ⊆ L(Ω) and
a non-empty event B ⊆ Ω, the set D⌋B := {f ∈ L(B) : IBf ∈ D} on B contains the
called-off gambles that are desirable. This conditioning rule preserves coherence;
we refer to de Cooman and Quaeghebeur (2012) for more details.

The reformulation of (TP2) (rigidity) in this context is then:

(∀B ∈ B, f ∈ D⌋B)IBf ∈ D̂ or, in other words, (∀B ∈ B)D⌋B ∈ D̂⌋B.

In words, “rigidity” means that we should preserve all the conditional (on elements
of B) assessments present in the original D.

To summarise, in this section we look for a joint coherent set of desirable gambles

D̂ on Ω such that

• D̂ ⊇ qD; [agreeing on B]
• D̂⌋B ⊇ D⌋B for all B in B, [rigidity]

and in particular, for the smallest such set, if it exists.
The following result is an immediate consequence of (de Cooman and Hermans,

2008, Thm. 3), which is a more general result that holds even for arbitrary possib-
ility spaces Ω.

Theorem 11. The unique smallest coherent set of desirable gambles on Ω satisfying
“agreeing on B” and “rigidity” is given by

D̂ := posi
(

qD ∪
⋃
B∈B

IB(D⌋B) ∪ L>0

)
.
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Here, posi is the operator that returns the smallest convex cone that includes its
input set:

posi(F) :=
{ n∑
k=1

λkfk : n ∈ N, λk ∈ R>0, fk ∈ F
}

for all F ⊆ L. It will be useful later on to establish the following alternative

expression for D̂, showing that the union with L>0 is superfluous in Theorem 11.

Proposition 12. We have that

D̂ = posi
(

qD ∪
⋃
B∈B

IB(D⌋B)
)
. (17)

It is worth noting that Proposition 12 guarantees that the set of desirable gambles

D̂ in Eq. (17) satisfies ‘rigidity’ with equality:

D̂⌋B = D⌋B for all B in B.

Moreover, there is a sense in which it also satisfies to most tight form of ‘agreeing

on B’ possible, namely that any B-measurable gamble belongs to D̂ if and only if

it belongs to qD:

(∀f ∈ LB)f ∈ D̂ ⇔ f ∈ qD.

Example 7. In this example we will start with an expectation operator E on L(Ω)
and an input expectation operator qE on LB, and use them to define the coherent

sets of desirable D and qD, as

D := {f ∈ L(Ω): E(f) > 0 or f ∈ L>0}

and
qD := {f ∈ L(B) : qE(f) > 0 or f ∈ L>0}.

Our goal is to use Proposition 12 to derive the law of iterated expectation

Ê(f) = qE(E(f |B)) for all f in L(Ω). (18)

Eq. (17) yields a coherent set of desirable gambles D̂ on L(Ω). We will show that

the lower prevision P D̂ associated with D̂, defined by Eq. (4) satisfies Eq. (18): in

other words, that P D̂(f) = qE(E(f |B)) =: Ê(f) for every f in L. To this end, it

suffices to show that Ê(f) > 0 ⇒ f ∈ D̂ and f ∈ D̂ ⇒ Ê(f) ≥ 0, for every f in L.
For the first implication, consider any gamble f for which Ê(f) > 0, and let

α := Ê(f)
2 > 0. For every B in B, consider the gambles fB : B → R : ω 7→ f(ω)

and gB := fB − E(f |B) + α. The gamble fB is the restriction of f to B, so
E(f |B) = E(fB |B), and therefore E(gB |B) = E(fB |B) − E(f |B) + α = α > 0,
whence gB ∈ D⌋B. Note that

f = E(f |B)− α+ f − E(f |B) + α

= E(f |B)− α+
∑
B∈B

IB(fB − E(f |B) + α)

= E(f |B)− α+
∑
B∈B

IBgB .
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Also, use (18) to infer that qE(E(f |B)−α) = qE(E(f |B))−α = Ê(f)−α = Ê(f)
2 > 0,

whence E(f |B)− α ∈ qD. So we conclude that

f = E(f |B)− α︸ ︷︷ ︸
∈ qD

+
∑
B∈B

IB gB︸︷︷︸
∈D⌋B

,

whence, indeed, f ∈ posi( qD ∪
⋃

B∈B IB(D⌋B)) = D̂.

For the second implication, consider any f ∈ D̂. Then, using Eq. (17) and taking

into account the coherence of qD, there are g in qD, n in N,B1, . . . , Bn in B, h1 in
D⌋B1, . . . , hn in D⌋Bn and (µ, λ1, . . . , λn) > 0 such that f = µg+

∑n
k=1 λkIBk

hk,
which implies that

Ê(f) = qE
(
E
(
µg +

n∑
k=1

λkIBk
hk

∣∣∣B)),
where we used (18). Using the coherence of D, we may assume that all the B1, . . . ,
Bn are different. Let E := {Bk : k ∈ {1, . . . , n}} ⊆ B, and note that for any Bℓ in E

E
(
µg +

n∑
k=1

λkIBk
hk

∣∣∣Bℓ

)
= µg(Bℓ) + λℓE(hℓ|Bℓ)

and for any B in B \ E

E
(
µg +

n∑
k=1

λkIBk
hk

∣∣∣B) = µg(B).

Hence,

Ê(f) = qE
(
E
(
µg +

n∑
k=1

λkIBk
hk

∣∣∣B))
=

n∑
ℓ=1

qE(IBℓ
)E
(
µg +

n∑
k=1

λkIBk
hk

∣∣∣Bℓ

)
+

∑
B∈B\E

qE(IB)E
(
µg +

n∑
k=1

λkIBk
hk

∣∣∣B)

=

n∑
ℓ=1

qE(IBℓ
)
(
µg(Bℓ) + λℓE(hℓ|Bℓ)

)
+

∑
B∈B\E

qE(IB)µg(B)

=
∑
B∈B

qE(IB)µg(B) +

n∑
ℓ=1

qE(IBℓ
)λℓE(hℓ|Bℓ)

= µ qE(g) +

n∑
ℓ=1

λℓ
qE(IBℓ

)E(hℓ|Bℓ).

Since µ ≥ 0, qE(g) ≥ 0, λ1 ≥ 0, . . . , λn ≥ 0, E(h1|B1) ≥ 0, . . . , E(hn|Bn) ≥ 0, we

find that, indeed, Ê(f) ≥ 0. ♢

7. The marginal extension theorem for Choice Functions

In this section, we shall investigate how to formulate the marginal extension
theorem for choice functions or, taking into account their equivalent representation,
for sets of desirable gambles sets from Section 2. In order to give our formulation, we
must first of all recall some additional features of this theory, related to the coherent
extension of assessments and to the connection with desirability. Before we do this,
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in order to present the results succinctly, we first make a small digression explaining
natural extension of an assessment, and representation of a set of desirable gamble
sets.

Assessments may be given in the form of a subset F ⊆ Q, which contains gamble
sets F ∈ F that you think desirable. If an assessment F ⊆ Q has a coherent exten-
sion K ⊇ F , then we call F consistent. If this is the case, De Bock and de Cooman
(2018) have established that there is a unique smallest coherent extension—called
natural extension—which is given by Rs(Posi(F ∪ Ls(Ω)>0)), where the two oper-
ators Rs and Posi are defined by

Rs(F) := {F ∈ Q : (∃G ∈ F)G \ L≤0 ⊆ F}

and

Posi(F) :=

{{ n∑
k=1

λf1:n
k fk : f1:n ∈

n

×
k=1

Fk

}
:

n ∈ N, F1, . . . , Fn ∈ F ,
(
∀f1:n ∈

n

×
k=1

Fk

)
λf1:n
1:n > 0

}
for all F in K, and where Ls(Ω)>0 := {{f} : f ∈ L>0}, L≤0 := {f ∈ L : f ≤ 0}.

Given a set of desirable gamble sets K, its binary part DK := {f ∈ L : {f} ∈ K}
summarises all the binary preferences present in K: DK collects the gambles f that
form desirable gamble sets {f}. If K is coherent, then so is DK (De Bock and de
Cooman, 2018, Lem. 18).

Conversely, given a set of desirable gambles D, there may be multiple sets of
desirable gamble sets K that are compatible with it, in the sense that DK =
D: the non-empty set {K ∈ K : DK = D} may contain more than one element.
However, if D is coherent, it always contains one unique smallest element (Van
Camp and Miranda, 2020, Prop. 5) KD := {F ∈ Q : F ∩ D ̸= ∅}, which is then
equal to

⋂
{K ∈ K : DK = D}, where K denotes the collection of all coherent

sets of desirable gamble sets. If we generalise KD ’s definition above to arbitrary
subsets D ⊆ L, then De Bock and de Cooman (2019, Prop. 8) have established
that KD is coherent if and only if D is.

In that same paper, they establish the following useful representation result;
recall that D denotes the collection of all coherent sets of desirable gambles.

Theorem 13. (De Bock and de Cooman, 2019, Thm. 9) Any set of desirable
gamble sets K is coherent if and only if there is a non-empty set D ⊆ D such
that K =

⋂
D∈D KD . We then say that D represents K. Moreover, K’s largest

representing set is D(K) := {D ∈ D : K ⊆ KD}.

Let us focus next on the formulation of the marginal extension. As before, we

consider an initial coherent set of desirable gamble sets qK on B, and a conditional
coherent set of desirable gamble sets K⌋B, and will look for a coherent set of

desirable gamble sets K̂ on Ω that extends both of them. To do so, we must again
suitably reformulate (TP1) and (TP2) to the current context. The idea is same as
for sets of desirable gambles: we use the simplifying device of equating a gamble
set F on B with its cylindrical extension F ⋆ on Ω, given by F ⋆ := {f⋆ : f ∈ F}. As
qK consists of gamble sets on B, using this device we may interpret qK as a subset
of Q(Ω).
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We are now in a position to formulate (TP1) (agreeing on B) in the current
context:

(∀F ∈ qK)F ∈ K̂ or, in other words, qK ⊆ K̂.

In order to formulate (TP2), we must specify how to condition a set of de-
sirable gamble sets. Given a set of desirable gamble sets K on Ω and a (non-
empty) conditioning event B ⊆ Ω, we define the conditioned set of desirable
gamble set K⌋B := {F ∈ Q(B) : IBF ∈ K} ⊆ Q(B) as the collection of the
called-off versions of gamble sets present in K. This conditioning rule preserves
coherence (Van Camp and Miranda, 2020, Prop. 7). It furthermore is compatible
with the conditioning rule for sets of desirable gambles: conditioning a coherent K
yields a conditioned coherent set of desirable gamble sets K⌋B that is represented
by {D⌋B : D ∈ D(K)} (Van Camp et al., 2023, Prop. 7).

The reformulation of (TP2) (agreeing on B) in this context is then:

(∀B ∈ B, F ∈ K⌋B)IBF ∈ K̂ or, in other words, (∀B ∈ B)K⌋F ⊆ K̂⌋F.

To summarise, in this section we look for a joint coherent set of desirable gamble

sets K̂ on Ω such that

• K̂ ⊇ qK; [agreeing on B]
• K̂⌋B ⊇ K⌋B for all B in B. [rigidity]

and in particular, for the smallest such set, if it exists.

Theorem 14. The unique smallest coherent set of desirable gamble sets K̂ on Ω
satisfying “agreeing on B” and “rigidity” is given by

K̂ := Rs
(
Posi

(
qK ∪

⋃
B∈B

IB(K⌋B) ∪ Ls(Ω)>0

))
= Rs

(
Posi

(
qK ∪

⋃
B∈B

IB(K⌋B)
))

.

Moreover, K̂ is represented by

D̂ :=
{
posi

(
qD ∪

⋃
B∈B

IB(D⌋B)
)
: qD ∈ D( qK), D ∈ D(K)

}
.

8. Conclusions

In an imprecise-probabilistic context, the well-known marginal extension the-
orem shows how to combine a marginal model with conditional ones. We have
shown how it also naturally generalises the law of total probability to sets of desir-
able gambles, and have extended it to the even more versatile framework of sets of
desirable gambles, and therefore to choice functions, too. In addition, we have also
focused on more specific frameworks, and studied the specific forms the marginal
extension can take in these models. We obtained a characterisation of the marginal
extension for minitive measures, and showed that, perhaps not entirely unexpected,
the two classes of distortion models we considered do not allow for an expression of
the marginal extension within its class. Moreover, we have showed that the major-
ity of the rules extending the law to the framework of belief functions give an outer
approximation of the marginal extension, and do not satisfy thus the property of
coherence.

Our results can be summarised in the following table:
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Family H M(P , P (·|B)) ∈ H? If not, ∃! inner approximation?
Minitive Sometimes (Prop. 4) Yes (Prop. 5)
Belief Sometimes (Prop. 7) No (Ex. 4)
LV NO (Prop. 9) Sometimes (Prop. 8)

PMM NO (Prop. 10) No (Ex. 6)
Sets of desir. gambles YES (Thm. 11)

Choice functions YES (Thm. 14)

While in this paper we have only dealt with one marginal and one conditional
model, we may more generally consider the case of a finite number of conditional
models on nested partitions, in which case we expect that an iterative application
of the marginal extension should provide the global model. While the marginal
extension theorem has been generalised to a finite number of partitions in (de
Cooman and Miranda, 2009; Miranda and de Cooman, 2007) and the results on
inner approximations from Miranda et al. (2023) would also be applicable to the
resulting lower probability, we should be careful in our analysis in that Jeffrey’s
rule does not comply with commutativity in general (Diaconis and Zabell, 1982;
Wagner, 2002).

Concerning the computation of the model, in the case of the marginal extension
of coherent lower previsions, a representation in terms of the extreme points of the
associated credal set was established by Miranda and de Cooman (2007); when
we are interested in obtaining an optimal inner approximation, the case of minitive
measures has been characterised in Sect. 3, while in the case of distortion models the
connection with centroids of credal sets may allow us to use the results fromMiranda
and Montes (2023). It may also be interesting to analyse the advantages we obtain
in the particular case where the we have precise information in the marginal model,
as is done by Petturiti and Vantaggi (2022a, Prop. 2) in the context of belief
functions.

Note also that in our compatibility study we have required that any assessment
present in the original models shall also be present in the updated ones; as such, it is
sort of reminiscent of the ideas behind the temporal coherence considered by Zaffalon
and Miranda (2013). It would also be interesting to consider this problem from the
point of view of belief revision, taking into account the discussions in (Chan and
Darwiche, 2003; Couso and Dubois, 2016; Marchetti and Antonucci, 2018) in the
precise case. For this, the work by de Cooman (2005) and Ma et al. (2011) would
be particularly relevant.

Finally, even if the results above provide some analysis of the formulation of the
law under imprecision, space and time limitations have prevented us from discuss-
ing a number of interesting side topics, such as (a) a deeper study of the connection
with the approaches established in the context of belief functions under other con-
ditioning rules; (b) sufficient conditions for the (non)-uniqueness of the optimal
inner approximations; (c) the study for other imprecise probability models, such
as probability intervals or 2-monotone capacities; and (d) the extension to infinite
spaces. We intend to address these problems in future work.
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D. Škulj. Jeffrey’s conditioning rule in neighbourhood models. International Journal
of Approximate Reasoning, 42:192–211, 2006.

P. Smets. Jeffrey’s rule of conditioning generalized to belief functions. In Proceedings
of UAI’1993, pages 500–505, 1993.

M. Spies. Conditional events, conditioning, and random sets. IEEE Transactions
on Systems, Man and Cybernetics, 24:1755–1763, 1994.

A. Van Camp, G.de Cooman, E. Miranda, and E. Quaeghebeur. Coherent choice
functions, desirability and indifference. Fuzzy Sets and Systems, 341:, 1-36, 2018.

A. Van Camp and E. Miranda. Modelling epistemic irrelevance with choice func-
tions. International Journal of Approximate Reasoning, 125:49–72, 2020.

A. Van Camp, K. Blackwell, and J. Konek. Independent natural extension for
choice functions. International Journal of Approximate Reasoning, 152:390–413,
2023.

C. Wagner. Generalizing Jeffrey conditionalization. In Proceedings of UAI’1992,
pages 331–335, 1992.

C. Wagner. Probability kinematics and commutativity. Philosophy of Science, 69:
266–278, 2002.

P. Walley. Coherent lower (and upper) probabilities. Technical report, University
of Warwick, Coventry, 1981, Statistics research report 22.

P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,
London, 1991.

M. Zaffalon and E. Miranda. Probability and time. Artificial Intelligence, 198:1–51,
2013.

C. Zhou and F. Cuzzolin. The total belief theorem. In Proceedings of UAI’2017,
2017.

C. Zhou, M. Wang, and B. Qin. Belief-kinematics Jeffrey’s rules in the theory of
evidence. In Proceedings of UAI’2014, pages 917–926, 2014.

Appendix: proofs

Proof of Proposition 2. We will show (i) M(Ê) ⊆ {P : (∀A ∈ P(B))P (A) ≥
P (A) and (∀A′ ⊆ Ω, B ∈ B)P (A′|B) ≥ P (A′|B)} and (ii) M(Ê) ⊇ {P : (∀A ∈
P(B))P (A) ≥ P (A) and (∀A′ ⊆ Ω, B ∈ B)P (A′|B) ≥ P (A′|B)}. For (i), consider

any P in M(Ê), which implies that P ≥ Ê . Since Ê ≥ qP as Ê extends qE

[and qE is qP ’s natural extension] and qP (B) > 0 for every B in B, we find that
also P (B) > 0 for all B ∈ B, whence P = P (P (·|B)), so P (·|B) is determined
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uniquely by Bayes’ rule. This implies that P (f) ≥ qE(f) for every f ∈ L(B), and in
particular that P (A) ≥ P (A) for every A ∈ P(B). Moreover, this also implies that
P (f |B) ≥ E(f |B) for every B ∈ B and every f ∈ L, whence P (A′|B) ≥ P (A′|B)
for all A′ ⊆ Ω and B ∈ B.

To show (ii), the inverse inclusion, consider any P such that P (A) ≥ P (A) for all
A ∈ P(B) and P (A′|B) ≥ P (A′|B) for all A′ ⊆ Ω and B ∈ B. It follows by natural
extension that P (f |B) ≥ E(f |B) for every f in L(B) and B in B, and similarly,

that P (g) ≥ qE(g) for every g in LB. consequence,

P (f) = P (P (f |B)) ≥ qE(E(f |B)) = Ê(f)

for every f ∈ L(Ω), which completes the proof.

Proof of Proposition 3. Assume first of all that P̂ ≥ Ê = qE(E(·|B)). Then for

any gamble f ∈ LB we infer P̂ (f) ≥ Ê(f) = qE(f), whence (TP1) holds. With

respect to (TP2), for any B ∈ B such that P̂ (B) > 0, the conditional P̂ (·|B)

coincides with the model P̂ induces by Eq. (11); since M(P̂ ) ⊇ M(Ê), this in turn

dominates the conditional induced by Ê by Eq. (11), which must then dominate

E(·|B), that satisfies GBR with respect to Ê , using (Miranda, 2009, Lem. 2).
Thus (TP2) holds.

Conversely, if (TP1) and (TP2) holds but there is some gamble such that P̂ (f) <

Ê(f), then it cannot be f ∈ LB by (TP1); consider then the conditional lower

prevision P̂ (·|B) where P̂ (·|B) is defined by Eq. (11) if P̂ (B) > 0 and P̂ (·|B) =

P (·|B) if P̂ (B) = 0. Then P̂ is coherent with P̂ (·|B), whence P̂ (f) ≥ P̂ (P̂ (f |B)).
As a consequence, there must be some B ∈ B such that P̂ (f |B) < P (f |B). But

then can neither be P̂ (B) > 0 (by (TP2)) nor P̂ (B) = 0 (by definition), which
leads to a contradiction.

Proof of Proposition 4.

(1) Consider two gambles f1, f2 on Ω. Then Ê(f1 ∧ f2) = qE(E(f1 ∧ f2|B)) =
qE(g1 ∧ g2) = min{qE(g1), qE(g2)}, where g1 = E(f1|B), g2 = E(f2|B). Thus, Ê
is minitive.

(2) Assume first of all that qE is minitive on gambles. Given two events A1, A2,

infer that Ê(A1∩A2) = qE(E(A1∩A2|B)) = qE(g1∧g2) = min{qE(g1), qE(g2)} =

min{Ê(A1), Ê(A2)}, where g1 = E(A1|B), g2 = E(A2|B).
Next, if E(·|B) is minitive on gambles, it is {0, 1}-valued on events by (de

Cooman and Miranda, 2014, Prop. 7). As a consequence, there exists a filter
FB such that

P (A1 ∩A2|B) =

{
1 if A1 ∩A2 ∈ FB

0 otherwise.

This implies that Ê(A1 ∩ A2) = qE(H) for H :=
⋃
{B : A1 ∩ A2 ∈ FB}. But

since H = H1∩H2 for H1 :=
⋃
{B : A1 ∈ FB} and H2 :=

⋃
{B : A2 ∈ FB} since

filters are closed under finite intersections, we deduce that Ê(A1) = qE(H1) and

Ê(A2) = qE(H2), and therefore Ê(A1 ∩A2) = min{Ê(A1), Ê(A2)}.
(3) To see this, we need to find some B ∈ B such that qP (B) ∈ (0, 1), which always

exists because qE is not minitive on gambles. Similarly, there is some A1 ⊂ B
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such that P (A1|B) ∈ (0, 1). By defining the events H1 := A1∪Bc and H2 := B,
we infer that:

Ê(H1 ∩H2) = Ê(A1) = qP (B) · P (A1|B)

Ê(H2) = qP (B)

Ê(H1) = P (A1|B) + (1− P (A1|B)) · P (Bc),

whence Ê(H1 ∩H2) < min{Ê(H1), Ê(H2)}.

Proof of Proposition 6. Consider P ∈ BelB and P (·|B) ∈ Bel(·|B). Then given
P ≥ P in PB and P (·|B) in P(·|B), it follows from (i)and (ii) that

T (P , P (·|B)) ≤ T (P, P (·|B)) = P (P (·|B)).

As a consequence,

T (P , P (·|B)) ≤ inf{P (P (·|B)) : P ≥ P , P (·|B) ≥ P (·|B)} = M(P , P (·|B)),

where the equality follows from (Walley, 1991, Thm.6.7.4). Since by (Walley, 1991,
Thm. 6.7.2) M(P , P (·|B)) is the smallest coherent lower prevision that satisfies
coherence with P , P (·|B), we deduce that whenever T ̸= M then T (P , P (·|B)) is
not coherent with P , P (·|B).

Proof of Proposition 7. The restriction to events of M(BelB, Bel(·|B)) coincides
with the lower probability of the random set Γ : B → P(Ω) given by Γ(B) = AB ,
where in the initial space we take BelB as a lower probability. Applying (Miranda
et al., 2005, Thm. 1), we deduce that the restriction to events of M(BelB, Bel(·|B))
is a belief function.

Proof of Proposition 8. That the first statement implies the second is trivial.
To see the converse, let us establish first of all the implication

(∀ω ∈ B)P (IB(I{ω} − E({ω}|B))) = 0 ⇒ (∀f ∈ L)P (IB(f − E(f |B))) = 0. (19)

To this end, consider first of all any event A ⊆ B, and we will show that P (IB(IA−
E(A|B))) = 0. If A = B then we have P (IB(IB−E(B|B))) = P (IB−IBE(B|B)) =
P (IB − IB1) = 0, so we assume that A ⊂ B. Then indeed

P (IB(IA − E(A|B))) = P

(∑
ω∈A

IB(I{ω} − E({ω}|B))

)
=
∑
ω∈A

P (IB(I{ω} − E({ω}|B))) = 0,

where the first equality follows from applying Eq. (16) twice, taking into account
that E(A|B) is a constant, and that coherent lower previsions satisfy constant
additivity. The second equality follows once we realise that min IB(IA−E(A|B)) =
−E(A|B) = −

∑
ω∈A E({ω}|B) =

∑
ω∈A min IB(I{ω}−E({ω}|B)), using that A ⊂

B, and the third one by left hand side in Eq. (19).
Next, consider a gamble f on Ω such that f = Bf , and let us express it as

f =
∑n

i=1 xiIAi
, for x1 > x2 > · · · > xn and a partition {A1, . . . , An} of B. Since a
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coherent lower prevision always satisfies constant additivity, we can assume without
loss of generality that xn = 0. Then

P

(
IB(

n∑
i=1

xiIAi − E(f |B))

)
= P

(
n∑

i=1

xiIAi −
n∑

i=1

xiE(Ai|B)

)

= P

(
n∑

i=1

xi(IB(IAi
− E(Ai|B)))

)

=

n∑
i=1

xiP (IB(IAi − E(Ai|B))) = 0.

Here the first equality follows from

E(f |B) = (1− δB)PB

(
n∑

i=1

xiIAi

)
+ δB min

B

(
n∑

i=1

xiIAi

)

= (1− δB)PB

(
n∑

i=1

xiIAi

)
=

n∑
i=1

xiE(Ai|B),

the third from

P

(
n∑

i=1

xiIB(IAi
− E(Ai|B))

)

= (1− δ)P

(
n∑

i=1

xiIB(IAi
− E(Ai|B))

)
+ δmin

(
n∑

i=1

xiIB(IAi
− E(Ai|B))

)

= (1− δ)

n∑
i=1

xiP (IB(IAi
− E(Ai|B)))− δ

n∑
i=1

xiE(Ai|B)

=

n∑
i=1

xi [(1− δ)P (IB(IAi
− E(Ai|B))) + δmin IB(IAi

− E(Ai|B))]

=

n∑
i=1

xiP (IB(IAi
− E(Ai|B))),

taking ω ∈ An for the minimum in the second equality, and the fourth one by
the assumption in Eq. (19). This establishes Eq. (19). Since P is coherent with
qE,E(·|B) if and only if P (f) = qE(f) and P (IB(f − E(f |B)) = 0 for every f ∈ L
and every B ∈ B, we deduce (a) from (b).

Let us now prove the equivalence between the second and third statements. To
this end, note already that two LV models determined by (P1, δ1) and (P2, δ2) are

equal if and only if P1 = P2 and δ1 = δ2. Therefore, we see that P = qE is equivalent

to (i) (B ∈ B)P (B) = PB(B), whence δ = 1−
∑

B∈B
qE(B) = 1−

∑
B∈B PB(B) =

δB; and (ii) P (IB(I{ω} − E({ω}|B))) = 0.
Next, given B ∈ B and ω ∈ B,

P (IB(I{ω} − E({ω}|B)))

= (1− δ)P (IB(I{ω} − E({ω}|B))) + δmin(IB(I{ω} − E({ω}|B)))

= (1− δ)(P ({ω})− P (B)E({ω}|B)) + δ(−E({ω}|B)),
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whence P (IB(I{ω} − E({ω}|B))) = 0 if and only if P ({ω}) = E({ω}|B)(δ+P (B))
1−δ .

Moreover, since P (B) =
∑

ω∈B P ({ω}), we infer that∑
ω∈B

E({ω}|B)(δ + P (B))

1− δ
= P (B).

The left hand side is equal to∑
ω∈B

(1− δB)PB({ω}|B)(δ + P (B))

1− δ
=

(1− δB)(δ + P (B))

1− δ
,

so this is equal to P (B) if and only if

δB =
δ + δP (B)

δ + P (B)
.

This completes the proof.

Proof of Proposition 9. Consider the conditional probability measure P (·|B)
given by P (A|B) = PB(A) for every B in B and A ⊆ B, and let P0 denote the
probability measure on Ω determined by PB, P (·|B). Then it holds that, for any
B ∈ B and ω ∈ B,

Ê({ω}) = qE((1− δB)P ({ω}|B)IB) = (1− δB)(1− δB)P0({ω}),
whence∑

ω∈B

Ê({ω}) = (1− δB)(1− δB)
∑
ω∈B

P0({ω}) = (1− δB)(1− δB)P0(B),

while
Ê(B) = qE(IB) = (1− δB)PB(B).

Thus, Eq. (16) is not satisfied and therefore Ê /∈ CLV, since δB and δB belong to
the open interval (0, 1).

Proof of Proposition 10. In order to establish this, we shall need to use the
expression of the natural extension of a PMM from events to gambles. It is given
by (Pelessoni et al., 2010; Walley, 1991):

E(f) = fτ + (1 + δ)P ((f − fτ )
+), (20)

where τ = δ
1+δ , fτ = sup{x ∈ R : P ({f ≤ x}) ≤ τ} and (f−fτ )

+ = max{f−fτ , 0}.
Assume ex absurdo that there is some such PMM P , and let (P, δ) be its as-

sociated parameters. Consider a gamble f on B given by f =
∑n

i=1 xiIAi for
x1 = 1 > x2 > · · · > xn = 0 and for a partition {A1, . . . , An} of B, and let us
characterise under which conditions we have that P (P (f |B) − Bf) = 0. Also, by
coherence we get that

P (A) ≥ PB(P (A|B)) > 0 (21)

for any event A.
First of all, taking into account that for any x > xn it holds that

P ({f ≤ x}) ≥ P (An) >
δ

1 + δ
,

since (1 + δ)P (An)− δ = P (An|B) > 0 by assumption, we deduce that if we apply
Eq. (20) to compute P (f |B) we obtain

P (f |B) = xn + (1 + δ)PB((f − xn)
+) = (1 + δ)PB(f),
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whence P (f |B)−Bf = (1 + δ)PB(f)−Bf .
On the other hand, it follows from Eq. (21) that P ({ω}) > 0 for every ω ∈ B. As

a consequence, defining g := P (f |B)−Bf , for any value x > min g = P (f |B)−x1 =
P (f |B)− 1 it holds that

P ({g ≤ x}) ≥ P (A1) >
δ

1 + δ
,

since (1 + δ)P (A1)− δ = P (A1) > 0 by Eq. (21). Thus, Eq. (20) gives

E(g) = P (f |B)− 1 + (1 + δ)P ((g −min g)+)

= (1 + δ)PB(f)− 1 + (1 + δ)P (IB(1− f)).

Therefore,

E(g) = 0 ⇔ (1 + δ)PB(f)− 1 + (1 + δ)P (IB(1− f)) = 0

⇔ P (f) = PB(f) + P0(B)− 1

1 + δ
.

Applying this to f = I{ω} for some ω ∈ B, we obtain that P should satisfy

P ({ω}) = PB({ω}) + P0(B)− 1

1 + δ
. (22)

This means that∑
ω∈B

P ({ω}) = 1 + |B|P0(B)− |B|
1 + δ

= P0(B) ⇔ P0(B) =
|B| − 1− δ

(|B| − 1)(1 + δ)
,

and this for every B ∈ B. If we consider B with more than two elements and take
both ω1, ω2 ∈ B with ω1 ̸= ω2, then E(P (I{ω1,ω2}|B) − BI{ω1,ω2}) = 0 if and only
if

P ({ω1, ω2}) = PB({ω1, ω2}) + P0(B)− 1

1 + δ
;

but by Eq. (22) it is

P ({ω1, ω2}) = PB({ω1, ω2}) + 2P0(B)− 2
1

1 + δ
;

and this can only be if P0(B) = 1
1+δ . Since 1

1+δ ̸= |B|−1−δ
(|B|−1)(1+δ) , we obtain a

contradiction.
Finally, if |B| = 2 for all B then it must be |B| = n

2 . We get on the one hand

P0(B) = 1−δ
1+δ for all B, and the equality 1 =

∑
B P0(B) = n

2P0(B) implies that

δ = n−2
n+2 ; but on the other hand for P (B) > 0 we should have then n < 4; this

means that n = 2 and that B has only one element.

Proof of Proposition 12. We will abbreviate F :=
⋃

B∈B IB(D⌋B), and show

that L>0 ⊆ posi(F). This will imply the desired result that posi( qD ∪ F ∪ L>0) =

posi( qD ∪ F): indeed, since posi is a closure operator, we infer that posi( qD ∪ F ∪
L>0) ⊆ posi( qD ∪ posi(F) ∪ L>0) = posi( qD ∪ posi(F)) ⊆ posi(posi( qD ∪ F)) =

posi( qD∪F) ⊆ posi( qD∪F ∪L>0), where the first equality follows once we establish
that L>0 ⊆ posi(F). So consider any f ∈ L>0. For any B in B, let fB : B → R : x 7→
f(x) be f ’s restriction to B, so that f =

∑
B∈B IBfB . Collect in E := {B ∈ B : fB ∈

L>0} = {B ∈ B : f(x) > 0 for some x in B} ⊆ B the events in B on which f attains
a positive value. That f ∈ L>0 implies that E is non-empty. For every B in B \ E
it follows that fB = 0, and hence f =

∑
B∈E IBfB . Note that, for every B in E ,
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the gamble fB ∈ L>0 belongs to D⌋B by its coherence whence IBf ∈ IBD⌋B, and
therefore, indeed, f =

∑
B∈B IBfB ∈ posi(

⋃
B∈B IB(D⌋B)) = posi(F).

Lemma 15. For any F ⋆ ⊆ L such that posi(F ⋆) ∩ L<0 = ∅, we have

Kposi(F⋆) = Rs(Posi(KF⋆)).

Proof. We will show that (i) Kposi(F⋆) ⊆ Rs(Posi(KF⋆)) and (ii) Kposi(F⋆) ⊇
Rs(Posi(KF⋆)).

For (i), consider any F in Kposi(F⋆), implying that there are n in N, real coef-
ficients λ1:n > 0 and g1, . . . , gn in F ⋆ such that g :=

∑n
k=1 λkgk ∈ F. Note

that the requirement posi(F ⋆) ∩ L<0 = ∅ implies that g /∈ L<0. By letting
F1 := {g1} ∈ KF⋆ , . . . , Fn := {gn} ∈ KF⋆ , and λg1:n

1:n := λ1:n > 0, we find

that {
∑n

k=1 λ
f1:n
k fk : f1:n ∈×n

k=1 Fk} = {
∑n

k=1 λkgk} = {g} belongs to Posi(KF⋆),
whence, indeed, F ∈ Rs(Posi(KF⋆)) since g /∈ L<0.

Conversely, for (ii), consider any F in Rs(Posi(KF⋆)), so F ⊇ F ′ \ L>0 for some

F ′ in Posi(KF⋆). This implies that F ′ = {
∑n

k=1 λ
f1:n
k fk : f1:n ∈×n

k=1 Fk} for some

n in N, F1, . . . , Fn in KF⋆ and real coefficients λf1:n
1:n > 0 for every f1:n in×n

k=1 Fk.
That all of F1, . . . , Fn belong to KF⋆ means that F1∩F ⋆ ̸= ∅, . . . , Fn∩F ⋆ ̸= ∅, so
there are g1 ∈ F1∩F ⋆, . . . , gn ∈ Fn∩F ⋆. Then the specific g :=

∑n
k=1 λ

g1:n
k gk ∈ F ′

belongs to posi(F ⋆), which tells us that g /∈ L<0, and hence g belongs to F, whence
F ∩ posi(F ⋆) ̸= ∅. Therefore indeed F ∈ Kposi(F⋆). □

Lemma 16. For any F ⊆ P(L) we have

K⋃
F =

⋃
F∈F

KF .

Proof. Consider any F ⋆ in Q, and infer that, indeed,

F ⋆ ∈ K⋃
F ⇔ F ⋆ ∩

⋃
F ̸= ∅ ⇔ (∃F ∈ F)F ⋆ ∩ F ̸= ∅

⇔ (∃F ∈ F)F ⋆ ∈ KF ⇔ F ⋆ ∈
⋃
F∈F

KF ,

which establishes the desired equality. □

Proof of Theorem 14. We start with the first statement. We will first show
that Ls(Ω)>0 ⊆ Posi(

⋃
B∈B IB(K⌋B)), which will establish the second equality:

indeed, abbreviating F :=
⋃

B∈B IB(K⌋B), since K and Posi are closure operators,

we infer that Rs(Posi( qK∪F ∪Ls
>0)) ⊆ Rs(Posi( qK∪Posi(F)∪Ls

>0)) = Rs(Posi( qK∪
Posi(F))) ⊆ Rs(Posi(Posi( qK ∪ F))) = Rs(Posi( qK ∪ F)) ⊆ Rs(Posi( qK ∪ F ∪ Ls

>0)),
where the first equality follows once we establish that Ls

>0 ⊆ Posi(F). So consider
any {f} in Ls(Ω)>0—which implies that f ∈ L(Ω)>0—and any D in D(K). Then
using the same argument as in the proof of Proposition 12 we infer that f ∈
posi(

⋃
B∈B IB(D⌋B)), or, in other words, that {f} ∈ Kposi(

⋃
B∈B IB (D⌋B)). Now

use Lemma 15 to infer that then {f} ∈ Rs(Posi(K⋃
B∈B IB (D⌋B))) and hence {f} ∈

Posi(K⋃
B∈B IB (D⌋B)) since f ∈ L>0 and therefore f /∈ L<0, and use subsequently

Lemma 16 to infer that then {f} ∈ Posi(
⋃

B∈B KIBD⌋B) = Posi(
⋃

B∈B IBKD⌋B) =

Posi(
⋃

B∈B IBKD⌋B).
Next we show that K̂ satisfies “agreeing on B” and “rigidity”. To this end,

note that K̂ satisfies “agreeing on B” by its definition and the fact that Rs and
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Posi are closure operators. Moreover, for any B in B, we have that K̂⌋B = {F ∈
Q(B) : IBF ∈ K̂} ⊇ {F ∈ Q(B) : IBF ∈ IB(K⌋B)} = K⌋B again using that Rs

and Posi are closure operators, so K̂ satisfies “rigidity” also.

We now turn to showing that K̂ is coherent. To this end, we infer from (De Bock

and de Cooman, 2018, Thm. 10) that if qK ∪
⋃

B∈B IB(K⌋B) is consistent, then K̂
is the expression for its natural extension, which then is guaranteed to be coherent.

We verify that qK ∪
⋃

B∈B IB(K⌋B) is consistent by considering any D̂ in the non-

empty D̂ ⊆ D,8 and showing that qK∪
⋃

B∈B IB(K⌋B) is a subset of KD̂, which is a

coherent set of desirable gamble sets by (De Bock and de Cooman, 2018, Lem. 12).

This will prove in one fell swoop that K̂ ⊆
⋂

D̂∈D̂ KD̂, a useful property that we
will use later on in this proof when establishing the second statement .

In order to do so, note that D̂ = posi( qD∪
⋃

B∈B IB(D⌋B)) for some qD in D( qK)

and D in D(K). Consider any F in K̂, meaning that F ⊇ F ′ \L<0 for some n in N,
F1, . . . , Fn in qK ∪

⋃
B∈B IB(K⌋B), and, for every f1:n in×n

k=1 Fk, real coefficients

λf1:n
1:n > 0 such that F ′ = {

∑n
k=1 λ

f1:n
k fk : f1:n ∈×n

k=1 Fk}. So any Fk belongs to
qK—in which case it also belongs to K

qD as qD ∈ D( qK), and hence Fk contains a

gamble gk ∈ qD—or Fk belongs to IB(K⌋B) for some B in B—in which case it also
belongs to IB(KD⌋B) = IB(KD⌋B) as D ∈ D(K), and hence F contains a gamble

IBgk where gk ∈ D⌋B. In any case, we find that
∑n

k=1 λ
g1:n
k gk ∈ F ′ belongs to

posi( qD ∪
⋃

B∈B IB(D⌋B)) = D̂, and hence F ′ ∈ KD̂. This implies that, indeed,
F ∈ KD̂.

So we have established that K̂ satisfies “agreeing on B”, “rigidity” and “coher-

ence”. To complete the proof for the first statement, we show that K̂ is the smallest
such set of desirable gamble sets. To this end, consider any set of desirable gamble
sets K⋆ satisfying “agreeing on B”, “rigidity” and “coherence”. Note that K⋆ must

include qK by “agreeing on B” and
⋃

B∈B IBK⌋B by “rigidity”. By “coherence” it

must therefore include Rs
(
Posi

(
qD∪
⋃

B∈B IB(D⌋B)
))

= K̂, whence K⋆ ⊇ K̂, show-

ing that, indeed, K̂ is the smallest set of desirable gambles that satisfies “agreeing
on B”, “rigidity” and “coherence”. This also establishes that the smallest set of
desirable gamble sets that satisfies “agreeing on B”, “rigidity” and “coherence” is
necessarily unique.

Now we turn to the second statement. We need to show that K̂ =
⋂

D̂∈D̂ KD̂.

Recall from the proof of the first statement that K̂ ⊆
⋂

D̂∈D̂ KD̂, so it suffices

to prove the converse set inclusion
⋂

D̂∈D̂ KD̂ ⊆ K̂. To this end, we use that,

from (Van Camp et al., 2023, Thm. 6), the natural extension of a consistent assess-
ment F is given by

⋂
{KD : D ∈ D,F ⊆ KD}. Applied to the current case, as the

assessment qK ∪
⋃

B∈B IB(K⌋B) is already known to be consistent from the proof
for the first statement, we infer that

K̂ =
⋂{

KD : D ∈ D, qK ∪
⋃
B∈B

IB(K⌋B) ⊆ KD

}
,

8It is a consequence of Thm. 11, which is a direct consequence of (de Cooman and Hermans,

2008, Thm. 3), that every element of D̂ is a coherent set of desirable gambles.
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and hence to establish that
⋂

D̂∈D̂ KD̂ ⊆ K̂ it suffices to show that any D⋆ in

D such that qK ∪
⋃

B∈B IB(K⌋B) ⊆ KD⋆ belongs to D̂. So consider such a D⋆,

which implies that K̂ ⊆ KD⋆—meaning that D⋆ ∈ D(K̂)—and
⋃

B∈B IB(K⌋B) ⊆
KD⋆—meaning that IB(K⌋B) ⊆ KD⋆ and hence K⌋B ⊆ KD⋆⌋B = KD⋆⌋B whence
D⋆⌋B ∈ D(K⌋B) for all B in B. As

⋃
B∈B IB(D⋆⌋B) =

⋃
B∈B{IBf : f ∈ D⋆⌋B} =⋃

B∈B{IBf : IBf ∈ D⋆} ⊆ D⋆, we find, taking into account its coherence, that

D⋆ = posi(D⋆ ∪
⋃

B∈B IB(D⋆⌋B)), whence indeed D⋆ ∈ D̂.
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