
Fuzzy Sets and Systems 482 (2024) 108908

Contents lists available at ScienceDirect

Fuzzy Sets and Systems

journal homepage: www.elsevier.com/locate/fss

Inferring from an imprecise Plackett–Luce model: Application to 

label ranking

Loïc Adam a, Arthur Van Camp b, Sébastien Destercke a,∗, Benjamin Quost a
a Université de Technologie de Compiègne, Heudiasyc, UMR 7253 CNRS, Compiègne, France
b Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, the Netherlands

A R T I C L E I N F O A B S T R A C T

Keywords:

Preference learning
Cautious inference
Poor data
Imprecise probability

The Plackett–Luce model is a popular parametric probabilistic model to define distributions 
between rankings of objects, modelling for instance observed preferences of users or ranked 
performances of algorithms. Since such observations may be scarce (users may provide partial 
preferences, or not all algorithms are run for a given experiment), it may be useful to consider the 
case where the parameters of the Plackett–Luce model are imprecisely known. In this paper, we 
first introduce the imprecise Plackett–Luce model, induced by a set of parameters (for instance, 
parameters with a high relative likelihood). Given a set of possible parameters for the model, we 
then provide an efficient algorithm to make cautious inferences, returning sets of possible optimal 
rankings (for instance in the form of partial orders). We illustrate the use of our imprecise model 
on label ranking, a specific kind of supervised learning.

1. Introduction

Learning and estimating probabilistic models over rankings of objects is an old problem, dating back to the 1920s [27]. In the 
last decades, this problem has known a revival, in particular due to a surge of interest from the machine learning community [14]. 
As the corresponding probabilities are defined over the space of permutations which grows exponentially with the number of ob-
jects, two classical approaches are either to split the initial problem in subcases (typically pairwise preferences [17]) or to use 
parametric models. In this latter case, two popular approaches consist either in associating a parametric random utility to each 
object and then considering the resulting distribution on rankings [4], or in directly defining a parametric distribution over the set 
of rankings [23].

There are multiple reasons to include cautiousness in both the estimation and inference steps of such models. The estimation 
may have to deal with scarce ranking information, such as in cold-start problems of recommender systems when predicting new user 
preferences [30], or with partial information, such as when one only observes top elements of a ranking or pairwise comparisons [21]. 
During the inference step, it may be useful to reinforce the reliability of the inferences made by outputting partial rankings as 
predictions, abstaining to predict when information is deemed unreliable. This could avoid recommending undesirable objects, or 
rejecting desirable ones, when only weak information is available, as well as allowing one to identify situations where obtaining 
more data or questioning the user may be instrumental.
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When using precise probabilistic models, such abstentions are usually obtained by thresholding the estimated probabilities [9]. 
However, it can be argued that precise probabilities alone make it difficult to differentiate between ambiguous situations (e.g., lots of 
observed preferences between two objects, half in favour of the first, half in favour of the second) and situations of lack of knowledge 
(e.g., no or very few observed preferences) [32]. This means in particular that approaches relying on precise probabilities may not 
be appropriate to deal with scarce data, due either to a lack of sensitivity or to being then strongly biased towards extreme values, 
thus lowering the interest of thresholding approaches. In contrast, relying on imprecise models to perform inferences makes it easier 
to reflect the lack of data by making the estimates more imprecise (and hence the predictions more partial) as data become scarcer. 
We will confirm this intuition in our experiments. Fundamental philosophical differences between precise and imprecise approaches 
to cautious inference lie behind this practical consideration: in the case of precise models, cautiousness is obtained through the 
decision/inference process, and is not reflected in the predictive model; whereas imprecise models encode a lack of knowledge in 
their structure during the estimation and learning steps, cautiousness merely being a consequence of the model encoding its limited 
state of knowledge. This argument, in addition to the aforementioned practical sensitivity to scarce data, supports the use of cautious 
approaches when handling scarce data.

It therefore makes sense to consider a theoretical framework that extends and enriches probabilities to better account for this 
distinction between ambiguity and ignorance. Imprecise probability theory [2], which models scarce knowledge by manipulating 
sets of probabilities, is an elegant mathematical framework that achieves this goal. However, to our knowledge, it has not yet been 
applied to the aforementioned approaches that are random utilities and parametric ranking models.

In this paper, we consider the latter, focusing more specifically on the well-known Plackett–Luce ranking model, which we present 
in Section 2. We focus on model inference in Section 3, showing that efficient methods can be developed to make cautious, guaranteed 
inferences based on sets of parameters. Section 4 then presents an application of the cautious Plackett–Luce model methods to 
label ranking, using relative likelihoods [5] to define the imprecise model via sets of parameters, similar to previous work [13]. 
Additionally, we provide in Appendix A some detailed proofs of two propositions introduced in Section 3, and in Appendix B we 
provide some complementary experimental results from Section 4. This work is an extension of a previously published work [1], and 
notably includes proofs as well as additional examples, a study of the case where parameters are interval-valued, and complementary 
experiments demonstrating the usefulness of the proposed approach when compared to state-of-the-art thresholding approaches [9].

2. The imprecise Plackett–Luce model

We consider the problem of obtaining a probabilistic model over rankings of a finite set of objects or labels Λ = {𝜆1, … , 𝜆𝑛}. 
That is, we are interested in defining probabilities over (strict) total orders on the labels—i.e., connective, transitive and irreflexive 
relations ≻ on Λ. We can (and will) identify any complete order ≻ over the labels—called label ranking—with its induced permutation 
𝜏 ∶ [1, 𝑛] → [1, 𝑛] on indices [1, 𝑛] ∶= {1, … , 𝑛}, that is, the unique permutation of Λ such that

𝜆𝜏(1) ≻ 𝜆𝜏(2) ≻⋯ ≻ 𝜆𝜏(𝑛).

Because of this identification, in this paper, we will use the terms ‘order on the labels’, ‘ranking’ and ‘permutation’ interchangeably. 
We will denote the set which contains the 𝑛! permutations on Λ by , a generic element of which will be denoted by 𝜏.

We focus on one particular theoretical probability measure 𝑃 ∶ 2 → [0, 1], namely the Plackett–Luce (PL) model [22,26,7,15]. 
The PL model is parameterised by 𝑛 parameters—called strengths—𝑣1, . . . , 𝑣𝑛 in the set of (strictly) positive numbers ℝ>0 ∶= {𝑥 ∈
ℝ ∶ 𝑥 > 0}.1 We usually denote the strength vector (𝑣1, … , 𝑣𝑛) by 𝑣, which completely specifies the PL model. For any strength vector 
𝑣, an arbitrary ranking 𝜏 in  is assigned probability:

𝑃𝑣 (𝜏) ∶=
𝑛∏
𝑘=1

𝑣𝜏(𝑘)∑𝑛
𝓁=𝑘 𝑣𝜏(𝓁)

=
𝑣𝜏(1)

𝑣𝜏(1) +⋯+ 𝑣𝜏(𝑛)
⋅

𝑣𝜏(2)

𝑣𝜏(2) +⋯+ 𝑣𝜏(𝑛)
⋯

𝑣𝜏(𝑛−1)

𝑣𝜏(𝑛−1) + 𝑣𝜏(𝑛)
.

(1)

The parameters 𝑣1, . . . , 𝑣𝑛 are defined up to a common positive multiplicative constant, so it is customary to assume that 
∑𝑛
𝑘=1 𝑣𝑘 = 1. 

Therefore, the parameter 𝑣 = (𝑣1, … , 𝑣𝑛) can be regarded as an element of the interior int(Σ) = {(𝑥1, … , 𝑥𝑛) ∈ℝ𝑛
>0 ∶

∑𝑛
𝑘=1 𝑥𝑘 = 1} of 

the 𝑛-simplex Σ ∶= {(𝑥1, … , 𝑥𝑛) ∈ℝ𝑛
≥0 ∶

∑𝑛
𝑘=1 𝑥𝑘 = 1}.

The PL model has the following nice interpretation: the larger a weight 𝑣𝑖 , the more a label 𝜆𝑖 tends to be preferred. This is 
reflected in the observation that the probability that label 𝜆𝑖 is the first ranked label is equal, for all 𝜏 ∈ , to:∑

𝜏(1)=𝑖
𝑃𝑣 (𝜏) = 𝑣𝑖.

Given that 𝜆𝑖 is the first label, the probability that 𝜆𝑗 is the second label is equal to 𝑣𝑗∕ 
∑𝑛
𝑘=1,𝑘≠𝑖 𝑣𝑘. This can be interpreted as the 

probability that 𝜆𝑗 is the first amongst the remaining labels Λ ⧵{𝜆𝑖}. By recurrence, given that 𝜆𝜏(1) is the first label, 𝜆𝜏(2) the second, 
2

1 Next to ℝ>0 , we will also define the set of non-negative real numbers ℝ≥0 ∶= {𝑥 ∈ℝ ∶ 𝑥 ≥ 0}.
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. . . , 𝜆𝜏(𝑖−1) the 𝑖 − 1-th one, the probability that 𝜆𝜏(𝑖) is the 𝑖-th label is equal to 𝑣𝜏(𝑖)∕ 
∑𝑛
𝑘=𝑖 𝑣𝜏(𝑘), that is, the probability that 𝜆𝜏(𝑖) is 

the first amongst the ‘remaining’ labels {𝜆𝜏(𝑖), … , 𝜆𝜏(𝑛)}.
For any PL model described by the strength vector 𝑣, finding the ‘best’ ranking—that is, the most probable (modal) ranking—is 

easy: it is sufficient to find the permutation 𝜏 that ranks the strengths in decreasing order. More specifically:

𝜏 ∈ argmax
𝜏′∈

𝑃𝑣 (𝜏′)⇔ 𝑣𝜏(1) ≥ 𝑣𝜏(2) ≥⋯ ≥ 𝑣𝜏(𝑛−1) ≥ 𝑣𝜏(𝑛). (2)

Example 1. Consider the set Λ = {𝑎, 𝑏, 𝑐} of objects, together with the strengths 𝜈𝑎 = 0.3, 𝜈𝑏 = 0.5, 𝜈𝑐 = 0.2. The most probable ranking 
is 𝑏 ≻ 𝑎 ≻ 𝑐 which has probability:

𝑃𝜈(𝑏 ≻ 𝑎 ≻ 𝑐) =
0.5

0.5 + 0.3 + 0.2
⋅

0.3
0.3 + 0.2

⋅
0.2
0.2

= 0.3.

2.1. The imprecise Plackett–Luce model

We define an imprecise Plackett–Luce (IPL) model as the set of precise PL models obtained by letting the strengths vary over a 
subset Θ ⊆ int(Σ), rather than being precisely defined. It can be seen and interpreted as a robust, set-valued estimation of an unknown 
PL model, as Θ induces a corresponding set of precise PL models. We will assume that Θ is a subset of int(Σ), rather than Σ, to ensure 
that all the strength values considered are positive, so that the PL model in Equation (1) is well-defined. A given ranking 𝜏 is now 
assigned several probabilities, each corresponding to one of the eligible precise PL models (or strength vectors). The lower and upper 
probabilities of a ranking 𝜏 are defined as:

𝑃Θ(𝜏) ∶= inf
𝑣∈Θ

𝑃𝑣 (𝜏) and 𝑃Θ(𝜏) ∶= sup
𝑣∈Θ

𝑃𝑣 (𝜏) for all 𝜏 in ,

and can be interpreted as bounds of a partially known PL model. A direct consequence is that the notion of ‘best’ or modal ranking 
is now ambiguous. Indeed, some ranking 𝜏 might maximise 𝑃𝑣 for some strength vector 𝑣 in Θ, while another ranking 𝜏′ maximises 
𝑃𝑢 (𝜏′) > 𝑃𝑢 (𝜏) for another strength vector 𝑢 in Θ, 𝑢 ≠ 𝑣. It results that classical decision rules and optimality conditions need to be 
redefined.

There are a number of imprecise-probabilistic optimality criteria. Since we are interested in returning cautious, set-valued pre-
dictions, we will consider here two of the most well-founded ones: (Walley–Sen) maximality [32,28] and E-admissibility [20].

We call a ranking 𝜏 maximal if it is not dominated in the following order:

𝜏1 ≻ 𝜏2 ⇔ (∀𝑣 ∈Θ)𝑃𝑣 (𝜏1) > 𝑃𝑣 (𝜏2). (3)

This is indeed a ‘robustification’ of the precise rule, as 𝜏1 ≻ 𝜏2 only if 𝑃𝑣 (𝜏1) > 𝑃𝑣 (𝜏2) is true for all possible models in Θ. If Θ
contains more than one element, then the ordering defined above can be a (strict) partial order—meaning that ≻ is irreflexive, 
asymmetric and transitive—that might not be complete, and which might therefore admit more than one non-dominated element. 
The set of all maximal rankings—the rankings that are not dominated under ≻, which we will denote further on by Θ—is 
therefore given by the set of rankings 𝜏 for which 𝜏′ ⊁ 𝜏 for all rankings 𝜏′:

𝜏 ∈Θ ⇔ (∀𝜏′ ∈ )𝜏′ ⊁ 𝜏 (4)

⇔ (∀𝜏′ ∈ )(∃𝑣 ∈Θ)𝑃𝑣 (𝜏) ≥ 𝑃𝑣 (𝜏′). (5)

A ranking 𝜏 is called E-admissible when there is a strength vector 𝑣 for which it maximises 𝑃𝑣 . In other words, the set of all 
E-admissible rankings, denoted further on by Θ, is given by the set of rankings 𝜏 for which:

(∃𝑣 ∈Θ)(∀𝜏′ ∈)𝑃𝑣 (𝜏) ≥ 𝑃𝑣 (𝜏′). (6)

Equivalently, the set of E-admissible rankings is given by:⋃
𝑣∈Θ

argmax
𝜏∈

𝑃𝑣 (𝜏),

which corresponds to the union of all possible modal rankings. One can check the known fact [29] that any ranking that is E-
admissible is also maximal, but not necessarily vice versa, by comparing Equations (4) and (6). The next example shows that, in our 
particular IPL setting, the two sets will not coincide in general.

Example 2. Fig. 1 displays the simplex representing the space of all possible parameters of a PL model for three objects, in barycentric 
coordinates. Each region is tagged by the corresponding optimal ranking, i.e., the most probable ranking whenever the strength vector 
lies in this region. This means that for a given set Θ of parameters, the set Θ corresponds to the rankings whose region intersects 
with Θ. Any subset in this simplex can therefore be seen as a subset Θ introduced in this section.

Now, consider the convex set Θ of parameters that is the interior of the convex hull of 𝑣1 = (1 − 𝜖, 0, 𝜖) and 𝑣2 = (0, 0.5 + 𝛾, 0.5 − 𝛾)
with 0.5 > 𝛾 > 𝜖 > 0, also represented in Fig. 1 for the specific case 𝜖 = 0.25 and 𝛾 = 0.3. That is, we look at all points 𝛼𝑣1 + (1 − 𝛼)𝑣2, 
3

with 𝛼 ∈ (0, 1).
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Fig. 1. Simplex Σ with regions where rankings are optimal and E-admissible, and with parameter set Θ of Example 2.

From the picture, one can see that the set of E-admissible rankings is:

Θ = {𝜆1 > 𝜆2 > 𝜆3, 𝜆1 > 𝜆3 > 𝜆2, 𝜆2 > 𝜆1 > 𝜆3, 𝜆2 > 𝜆3 > 𝜆1}

as the full line crosses only the regions corresponding to those four rankings.
Besides, it turns out that 𝜆3 > 𝜆1 > 𝜆2 ∈Θ: it can be checked that for each 𝜏, we may find a suitable set of parameters 𝑣 ∈ Θ

such that 𝑃𝑣 (𝜆3 > 𝜆1 > 𝜆2) ≥ 𝑃𝑣 (𝜏), meaning that 𝜏 ⊁ (𝜆3 > 𝜆1 > 𝜆2). For instance, for 𝜏 = 𝜆1 > 𝜆2 > 𝜆3, we must find a strength 
vector 𝑣 ∈Θ such that:

𝑣3 ⋅
𝑣1

𝑣1 + 𝑣2
> 𝑣1 ⋅

𝑣2
𝑣3 + 𝑣2

;

any vector with 𝑣2 sufficiently close to 0 within Θ satisfies this inequality: one can therefore consider the point 𝑣1. Other cases can 
be treated similarly, by picking adequate strength vectors within Θ.

3. Inference with IPL

We have seen in Section 2 that for a precise PL model, the ‘best’ (most probable) ranking can easily be found using Equation (2). 
Things become more complicated when the Plackett–Luce model becomes imprecise, since in this case, computing the set of all 
rankings satisfying Equation (4) to make robust and imprecise predictions generally require comparing all pairs of possible answers.

This will be most of the time infeasible in practice, because the number of items to compare (𝑛!) will quickly become huge as 
𝑛 grows: as a consequence, only problems with very few labels to rank will be tractable by sheer enumeration. Therefore, we need 
to find efficient ways to make predictions that remain coherent with imprecise probabilistic principles. Two different ways to do so 
are to consider approximate but guaranteed inferences in the general case, or to consider subcases (i.e., domain restrictions) where 
making exact inferences become tractable.

In the following sections, we introduce two inference methods for the IPL model, one for each of these ideas. The first one, 
presented in Section 3.1, is an outer approximation to the set Θ of (Walley–Sen) maximal rankings, and therefore also to the set 
Θ of E-admissible ones. No further assumptions about Θ need to be made. In Section 3.2, we introduce a second exact inference 
method where the set of strengths Θ has a specific form, namely that of probability intervals [12]. Such intervals can be obtained, e.g., 
as lower/upper bounds resulting from projecting a generic set Θ on each strength value. We will introduce an efficient algorithm to 
compute the exact set Θ of E-admissible rankings.

3.1. Outer approximation in the general case

We investigate here a criterion to decide whether a ranking is maximal. Rather than focusing on the whole ranking of objects, the 
idea in this section is to focus on individual pairs of objects: in this case, making inferences is easier and lead to outer approximations 
of Θ.

Inferring from Equation (3) and given two permutations 𝜏 and 𝜏′, we have:

𝜏 ≻ 𝜏′ ⇔ (∀𝑣 ∈Θ)
𝑃𝑣 (𝜏)
𝑃𝑣 (𝜏′)

> 1. (7)

Infer that in the expression for 𝑃𝑣 in Equation (1), the numerator does not depend on 𝜏, and hence we only have to deal with 
4

denominators in Equation (7).
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Now, let us assume for a moment that the strengths are still precise, and consider 𝜏 and 𝜏′ such that 𝜏(𝑘) = 𝜏′(𝑘) for all 𝑘 ∈
{1, … , 𝑚} ⧵ {𝑖, 𝑗} with 𝑖 ≠ 𝑗, and 𝜏(𝑗) = 𝜏′(𝑖) and 𝜏(𝑖) = 𝜏′(𝑗): the two rankings 𝜏 and 𝜏′ are equal, except for the positions 𝑖 and 𝑗 of 
two labels that are “swapped”. We assume without loss of generality that 𝑖 < 𝑗. This implies that 

∑𝑛
𝓁=𝑘 𝑣𝜏(𝓁) =

∑𝑛
𝓁=𝑘 𝑣𝜏′(𝓁) whenever 

𝑘 belongs to {1, … , 𝑛} ⧵ {𝑖 + 1, … , 𝑗}. Infer from Equation (7) that:

𝑃𝑣 (𝜏)
𝑃𝑣 (𝜏′)

=
𝑛∏
𝑘=1

∑𝑛
𝓁=𝑘 𝑣𝜏′(𝓁)∑𝑛
𝓁=𝑘 𝑣𝜏(𝓁)

=
𝑖∏

𝑘=1

∑𝑛
𝓁=𝑘 𝑣𝜏′(𝓁)∑𝑛
𝓁=𝑘 𝑣𝜏(𝓁)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=1

⋅
𝑗∏

𝑘=𝑖+1

∑𝑛
𝓁=𝑘 𝑣𝜏′(𝓁)∑𝑛
𝓁=𝑘 𝑣𝜏(𝓁)

⋅
𝑛∏

𝑘=𝑗+1

∑𝑛
𝓁=𝑘 𝑣𝜏′(𝓁)∑𝑛
𝓁=𝑘 𝑣𝜏(𝓁)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

=
𝑗∏

𝑘=𝑖+1

𝑣𝜏′(𝑗) +
∑𝑛

𝓁=𝑘,𝓁≠𝑗 𝑣𝜏′(𝓁)

𝑣𝜏(𝑗) +
∑𝑛

𝓁=𝑘,𝓁≠𝑗 𝑣𝜏(𝓁)
=

𝑗∏
𝑘=𝑖+1

𝑣𝜏(𝑖) +
∑𝑛

𝓁=𝑘,𝓁≠𝑗 𝑣𝜏′(𝓁)

𝑣𝜏(𝑗) +
∑𝑛

𝓁=𝑘,𝓁≠𝑗 𝑣𝜏(𝓁)
.

Consider for any 𝑘 in {𝑖 +1, … , 𝑗} the positive number 𝐶𝑘 ∶=
∑𝑛

𝓁=𝑘,𝓁≠𝑗 𝑣𝜏(𝓁) > 0, then also 𝐶𝑘 =
∑𝑛

𝓁=𝑘,𝓁≠𝑗 𝑣𝜏′(𝓁) because 𝜏′(𝓁) = 𝜏(𝓁)
for any 𝓁 ≠ 𝑖, 𝑗, whence:

𝑃𝑣 (𝜏)
𝑃𝑣 (𝜏′)

=
𝑗∏

𝑘=𝑖+1

𝑣𝜏(𝑖) +𝐶𝑘
𝑣𝜏(𝑗) +𝐶𝑘

.

Since all the 𝐶𝑘 are positive real numbers, this tells us that:

𝑃𝑣 (𝜏) > 𝑃𝑣 (𝜏′)⇔
𝑃𝑣 (𝜏)
𝑃𝑣 (𝜏′)

> 1⇔ 𝑣𝜏(𝑖) > 𝑣𝜏(𝑗),

and therefore, for our specific rankings 𝜏 and 𝜏′:

𝜏 ≻ 𝜏′ ⇔ (∀𝑣 ∈Θ)𝑣𝜏(𝑖) > 𝑣𝜏(𝑗). (8)

Determining whether the requirement in Equation (8) is fulfilled comes down to solving the optimisation problem

inf
𝑣∈Θ

(𝑣𝜏(𝑖) − 𝑣𝜏(𝑗)) > 0. (9)

This is simple in quite a number of cases: when Θ is a polytope defined by linear constraints, this can be done through standard 
linear programming; when Θ is a strict convex set and has an infinity of extreme points, one can resort to convex optimisation (e.g., 
interior point methods) if needed. When Θ is characterised by a finite number of points (the extreme points of a polytope or points 
resulting from samplings), one can just apply the linear form (9) to every such point. Also, since (9) is linear, considering Θ or its 
convex hull would yield the same solution, thus making all previous approaches applicable to a set Θ of a general form.

Given an IPL model with strengths Θ ⊆ int(Σ), we can easily build a partial ordering outer-approximating Θ, in the sense that 
all rankings within Θ are linear extensions of this partial order. Of course, this partial ordering may contain solutions that are not 
optimal under maximality, but we are sure that it will contain all optimal solutions, and it can be obtained easily. More formally, if 
we denote by 𝜆𝑘 ≻ 𝜆𝓁 the fact that Equation (9) is satisfied, i.e., inf𝑣∈Θ(𝑣𝜏(𝑘) − 𝑣𝜏(𝓁)) > 0, then the set

Θ = {𝜏 ∶ 𝜆𝑘 ≻ 𝜆𝓁 ⟹ 𝜏(𝑘) < 𝜏(𝓁)}

of permutations representable by the partial order ≻ can be used as an outer approximation to the set of maximal linear orders, in 
the sense that Θ ⊆ Θ. The next example shows that this inclusion can be strict in some cases.

Example 3. Let us consider the convex combination Θ between the two points 𝑣1 = (0.4, 0.2 − 𝜖, 0.4 + 𝜖) and 𝑣2 = (0.4, 0.4 + 𝜖, 0.2 − 𝜖), 
where 0 < 𝜖 < 0.2 (see Fig. 2). One can check that Θ = {𝜆1 > 𝜆2 > 𝜆3, 𝜆1 > 𝜆3 > 𝜆2, 𝜆2 > 𝜆1 > 𝜆3, 𝜆3 > 𝜆1 > 𝜆2} by observing that 
Θ is equal to this latter set and that we have, for instance, {𝜆1 > 𝜆3 > 𝜆2} ≻ {𝜆3 > 𝜆2 > 𝜆1}, as

inf
𝑣∈Θ

(
𝑝𝑣 ({𝜆1 > 𝜆3 > 𝜆2}) − 𝑝𝑣 ({𝜆3 > 𝜆2 > 𝜆1})

)
= inf
𝑣∈Θ

(
𝑣1

𝑣3
𝑣3 + 𝑣2

− 𝑣3
𝑣2

𝑣1 + 𝑣2

)
= inf
𝑣∈Θ

(
𝑣3

0.16 − 0.2𝑣2
0.6(0.4 + 𝑣2)

)
is positive, since both 𝑣3 and 0.16 − 0.2𝑣2 are always positive whatever the point chosen within Θ. However, one can easily check 
5

that inf𝑣∈Θ(𝑣𝑖 − 𝑣𝑗 ) < 0 for all pairs of 𝑖, 𝑗, therefore Θ =.
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Fig. 2. Parameter set Θ of Example 3.

A simpler sufficient condition—which is not necessary—is that:

𝑣
𝜏(𝑖) ∶= inf

𝑣∈Θ
𝑣𝜏(𝑖) > 𝑣𝜏(𝑗) ∶= sup

𝑣∈Θ
𝑣𝜏(𝑗).

Indeed, this condition directly implies that if 𝑣𝓁 < 𝑣𝑘 for two indices 𝑘 and 𝓁, then any ranking that prefers 𝜆𝓁 over 𝜆𝑘—in other 
words, any ranking 𝜏 for which 𝜏(𝓁) < 𝜏(𝑘)—will be dominated, according to Equation (3), by another ranking which only differs by 
the positions of 𝜆𝓁 and 𝜆𝑘. Among other things, this allows to conclude that if 𝑣

𝑘
> 𝑣𝓁 , all maximally admissible rankings will be such 

that 𝜆𝑘 ≻ 𝜆𝓁 . We can predict a partial ordering based on pairwise comparisons such that 𝜆𝑘 ≻ 𝜆𝓁 whenever 𝑣
𝑘
> 𝑣𝓁 . This condition is 

weaker than inf𝑣∈Θ(𝑣𝜏(𝑘) − 𝑣𝜏(𝓁)) > 0, because inf𝑣∈Θ 𝑣𝜏(𝑘) − sup𝑣∈Θ 𝑣𝜏(𝓁) ≥ inf𝑣∈Θ(𝑣𝜏(𝑘) − 𝑣𝜏(𝓁)). However, they are both equal when 
the set Θ is defined by intervals, a case that we explore in the next section and for which we give an efficient enumeration algorithm 
to get Θ.

3.2. Interval-valued case

In this section, we will make the simplifying assumption that the set of possible strengths is of the form:

Θ=
( 𝑛⨉
𝑘=1

[𝑣
𝑘
, 𝑣𝑘]

)
∩ int(Σ),

or in other words, that Θ is defined by the interval [𝑣
𝑘
, 𝑣𝑘] ⊆ (0, 1) only, for each index 𝑘 in {1, … , 𝑛}. We believe such a restriction 

to be of particular practical interest, as it would be easy for a user to understand and interpret intervals of strength. Furthermore, we 
will see in this section that this restriction allows us to propose efficient inference algorithms.

We can interpret the possible strengths Θ as a subset of the simplex Σ, and therefore also as being equivalent to a set of 
probabilistic mass functions on {𝑣1, … , 𝑣𝑛}. Since the possible strengths Θ are determined by the intervals [𝑣

𝑘
, 𝑣𝑘] ⊆ (0, 1) for every 

index 𝑘 in {1, … , 𝑛}, it is formally equivalent to a so-called set of probability intervals on singletons [2, Section 4.4]. De Campos et 
al. [12] showed that it is coherent—meaning the set Θ is non-empty, convex and tight (by which we mean that each pair of specified 
bounds 𝑣

𝑘
, 𝑣𝑘 is reachable by a point in Θ)—if and only if:

(∀𝑘 ∈ {1,… , 𝑛})

(
𝑣
𝑘
+

𝑛∑
𝑖=1
𝑖≠𝑘

𝑣𝑖 ≥ 1 and 𝑣𝑘 +
𝑛∑
𝑖=1
𝑖≠𝑘

𝑣
𝑖
≤ 1

)
. (10)

We will assume in the following that Θ is a coherent set of possible strengths. It should however be noted that each point in the set Θ
induces a corresponding probability over the space , in contrast with probability intervals that directly define a set of probabilities 
over the space Λ.

Remember that a given ranking 𝜏 is E-admissible if there is a parametrisation 𝑣 in Θ such that 𝜏 maximises 𝑃𝑣 . In this section, 
we are interested in the set of all E-admissible rankings 

⋃
𝑣∈Θ argmax𝜏∈ 𝑃𝑣 (𝜏).

3.2.1. Checking E-admissibility

We will provide here an efficient way to check whether a given ranking 𝜏 is E-admissible. Our argument hinges on the observation, 
in Equation (2), that for any 𝑣 in int(Σ) the ranking 𝜏 maximises 𝑃𝑣 if and only if the values in 𝑣 are ranked (in decreasing order) 
according to the indices in 𝜏. In other words, a ranking 𝜏 maximises 𝑃𝑣 if and only if 𝑣𝜏(1) is the highest strength, 𝑣𝜏(2) is the second 
highest of the strengths, 𝑣𝜏(3) is the third-highest rank, and so on.

Proposition 1. Consider any parametrisation Θ =
(⨉𝑛

𝑘=1[𝑣𝑘, 𝑣𝑘]
)
∩ int(Σ) of an imprecise Plackett–Luce model, and any ranking 𝜏 in . 
6

Then 𝜏 is E-admissible—in other words, 𝜏 ∈
⋃
𝑣∈Θ argmax𝜏′∈ 𝑃𝑣 (𝜏′)—if and only if there is a 𝑘 in {1, … , 𝑛} such that:
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1 −
𝑘−1∑
𝓁=1

min{𝑣𝜏(1),… , 𝑣𝜏(𝓁)} −
𝑛∑

𝓁=𝑘+1
max{𝑣

𝜏(𝓁),… , 𝑣
𝜏(𝑛)} ∈ [max{𝑣

𝜏(𝑘),… , 𝑣
𝜏(𝑛)},min{𝑣𝜏(1),… , 𝑣𝜏(𝑘)}] (11)

and

𝑣
𝜏(𝓁) ≤min{𝑣𝜏(1),… , 𝑣𝜏(𝓁)} for all 𝓁 in {1,… , 𝑘− 1}, and 𝑣𝜏(𝓁) ≥max{𝑣

𝜏(𝓁),… , 𝑣
𝜏(𝑛)} for all 𝓁 in {𝑘+ 1,… , 𝑛}. (12)

The proof of Proposition 1 can be found in Appendix A. This proof shows that a possible solution of strength vectors being ordered 
as for 𝜏 is to let 𝑣𝜏(𝓁) ∶= min{𝑣𝜏(1), … , 𝑣𝜏(𝓁)} for any 𝓁 in {1, … , 𝑘 − 1}, 𝑣𝜏(𝓁) ∶= max{𝑣

𝜏(𝓁), … , 𝑣
𝜏(𝑛)} for any 𝓁 in {𝑘 + 1, … , 𝑛}, and 

also 𝑣𝜏(𝑘) ∶= 1 −
∑𝑛

𝓁=1,𝓁≠𝑘 𝑣𝜏(𝓁). Equation (12) actually ensures that for 𝓁 in {1, … , 𝑘 −1} and 𝓁 in {𝑘 +1, … , 𝑛}, such an assignment 
is within the intervals [𝑣

𝜏(𝓁), 𝑣𝜏(𝓁)], and Equation (11) ensures that 𝑣𝜏(𝑘) ∈ [𝑣
𝜏(𝑘), 𝑣𝜏(𝑘)], making sure that this assignment satisfies our 

interval constraints.
The condition in Proposition 1 has a polynomial complexity in the number 𝑛 of labels. Indeed, we need to check 𝑛 different 

values of 𝑘, and for each value 𝑘, we need by Equation (11) to calculate a sum of 𝑛 − 1 terms, and to check by Equation (12) 𝑛 − 1
inequalities, which yields a complexity of 𝑛(2𝑛 − 2). This can even be slightly reduced when some intervals in Equation (11) are 
empty, as for those values 𝑘 where it happens, Equation (11) is trivially not satisfied, and we can avoid performing the summations 
and inequality checks.

3.2.2. Computing and enumerating all E-admissible rankings

Equation (11) offers a very quick way to check whether a given ranking is E-admissible, therefore allowing one to easily build an 
approximation of Θ for instance through sampling. However, applying Equation (11) directly to obtain the exact Θ is clearly not 
efficient enough. The main bottleneck is that it requires us to check E-admissibility for each individual ranking separately. Since there 
are 𝑛! many such rankings, this quickly becomes intractable. In order to avoid this exponential blow-up, we will now develop an 
algorithm that is able to rule out the E-admissibility of many rankings at once, without having to explicitly check the E-admissibility 
of each of them individually.

Ruling out multiple rankings at once. The central idea of our algorithm is to use a search tree in order to navigate the set of all 
rankings , which makes it possible to determine whether a set of rankings is worth being further investigated. Each node in the tree 
corresponds to a sequence of labels at the beginning of a set of rankings; exploring further the branch consists in adding additional 
labels to the sequence (and thus restricting the corresponding set of rankings). If we are able to infer that there is no E-admissible 
ranking 𝜏 which contains a given sequence of labels, then we can completely ignore all rankings starting with this sequence. In 
Example 4 and Fig. 4, we provide an example with 𝑛 = 4 labels.

Consider any coherent parametrisation Θ determined by the probability intervals [𝑣
𝑘
, 𝑣𝑘] for all 𝑘 in {1, … , 𝑛}. Let 

(𝜏(1), … , 𝜏(𝑗)) = (𝑘1, … , 𝑘𝑗 ) be an initial sequence of labels, with 𝑘1, 𝑘2, . . . 𝑘𝑗 being distinct elements of {1, … , 𝑛}. We want to 
infer whether there exists a ranking 𝜏 with the initial sequence (𝑘1, … , 𝑘𝑗 ) which is E-admissible with respect to Θ. To this end, let 
us introduce the following three equations:

𝑗∑
𝓁=1

min{𝑣𝑘1 ,… , 𝑣𝑘𝓁} +
𝑛∑
𝑖=1

𝑖∉{𝑘1 ,…,𝑘𝑗}

min{𝑣𝑘1 ,… , 𝑣𝑘𝑗 , 𝑣𝑖} ≥ 1; (𝐴𝑗)

𝑣𝑘𝑗 ≥max{𝑣
𝑖
∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝑗}}; (𝐵𝑗)

max{𝑣
𝑖
∶ 𝑖 ∈ {1,… , 𝑛}} +max{𝑣

𝑖
∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1}} +…

+max{𝑣
𝑖
∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝑗−1}} +

𝑛∑
𝑖=1

𝑖∉{𝑘1 ,…,𝑘𝑗}

𝑣
𝑖
≤ 1. (𝐶𝑗)

In the special case where 𝑗 = 1—that is, we want to know whether a ranking starting with a single given element 𝑘1 is E-admissible—
the three Equations (𝐴𝑗 ), (𝐵𝑗 ) and (𝐶𝑗 ) reduce to:

𝑛∑
𝑖=1

min{𝑣𝑘1 , 𝑣𝑖} ≥ 1; (𝐴1)

𝑣𝑘1 ≥max{𝑣
𝑖
∶ 𝑖 ∈ {1,… , 𝑛}}; (𝐵1)

max{𝑣
𝑖
∶ 𝑖 ∈ {1,… , 𝑛}} +

𝑛∑
𝑖=1
𝑖≠𝑘1

𝑣
𝑖
≤ 1. (𝐶1)

Note that under the coherence requirement (10), Equation (𝐶1) is a direct consequence of Equation (𝐵1), but for 𝑗 ≥ 2 Equation (𝐶𝑗)
7

can no longer be deduced from the other equations.
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3∕8

5∕8

1∕12
1∕30

1∕5
1∕8

3∕8

[𝑣1, 𝑣1] [𝑣2, 𝑣2] [𝑣3, 𝑣3] [𝑣4, 𝑣4]

Fig. 3. Probability intervals for Example 4.

𝑑1✓ 𝑑2✗ 𝑑3✗ 𝑑4✓

𝑑2✗ 𝑑3✓ 𝑑4✓ 𝑑1✓ 𝑑2✗ 𝑑3✗

𝑑2✗ 𝑑4✓ 𝑑2✓ 𝑑3✓ 𝑑2✗ 𝑑3✓

𝑑2✓ 𝑑3✓ 𝑑2✓ 𝑑2✓

𝜏(1)

𝜏(2)

𝜏(3)

𝜏(4)

Fig. 4. Search tree for 𝑛 = 4, issued from Example 4.

Proposition 2. Consider any coherent parametrisation Θ determined by a set of probability intervals [𝑣
𝑘
, 𝑣𝑘] for all 𝑘 in {1, … , 𝑛}, and any 

initial segment (𝜏(1), … , 𝜏(𝑚)) = (𝑘1, … , 𝑘𝑚) of length 𝑚 ∈ {1, … , 𝑛 − 1}. Then, there exists an E-admissible ranking with initial segment 
(𝑘1, … , 𝑘𝑚) if and only if the Equations (𝐴𝑗), (𝐵𝑗) and (𝐶𝑗) are fulfilled for every 𝑗 in {1, … , 𝑚}.

The proof of Proposition 2 can be found in Appendix A. Let us now introduce an example illustrating Proposition 2, as well 
as the tree resulting from applying Algorithms 1 and 2 (introduced after this example), which simply check recursively whether 
Equations (𝐴𝑗), (𝐵𝑗) and (𝐶𝑗) are fulfilled in a given branch in order to prolong it.

Example 4. Let us consider a case where we have 𝑛 = 4 labels, and where our set of possible parameters is given by the intervals 
[𝑣1, 𝑣1] = [3∕8, 5∕8], [𝑣2, 𝑣2] = [1∕12, 1∕12], [𝑣3, 𝑣3] = [1∕30, 1∕5] and [𝑣4, 𝑣4] = [1∕8, 3∕8] (which is easily verified to be coherent using 
Equation (10)). See Fig. 3 for a visualisation of the intervals.

A possible strength vector 𝑣 ∈ Θ, for which 𝜏 = (1, 3, 4, 2) is the most probable ranking, is given by (𝑣1, 𝑣2, 𝑣3, 𝑣4) =
(5∕8, 1∕12, 1∕6, 1∕8): we check easily that 𝑣 belongs to Θ and that 𝑣𝜏(1) = 5∕8 ≥ 𝑣𝜏(2) = 1∕6 ≥ 𝑣𝜏(3) = 1∕8 ≥ 𝑣𝜏(4) = 1∕12, so that Equa-
tion (2) guarantees that 𝜏 is indeed E-admissible. Another way to check it, as will be developed below in Algorithms 1-2, is to check 
that Equations (𝐴𝑗), (𝐵𝑗) and (𝐶𝑗) are satisfied for the growing sequences (1), (1, 3), (1, 3, 4) and (1, 3, 4, 2). This is why the branch 
𝑑1, 𝑑3, 𝑑4, 𝑑2 is fully developed to a depth of 𝑛 = 4 in the tree represented by Fig. 4. To give an overview, Table 1 displays strength 
vectors in Θ which yield as model rankings the different rankings 𝜏 corresponding to the leaves in Fig. 4. This implies that all the 
rankings indicated in Fig. 4 are indeed E-admissible with respect to Θ.

We can also show and check that every branch of the tree in Fig. 4 that stops before reaching a depth of 𝑛 = 4 corresponds to 
a starting sequence whose completion cannot be an E-admissible ranking 𝜏. Take for instance the sequence starting with (1, 2), and 
assume ex absurdo that there would be such an E-admissible ranking 𝜏. This would imply that there is a strength vector 𝑣 in Θ such 
that 𝑣1 ≥ 𝑣2 ≥max{𝑣3, 𝑣4}, which by Equation (2) would imply that 1∕12 = 𝑣2 ≥ 𝑣4 ≥ 𝑣4 = 1∕8, an impossibility.

In practice, this impossibility can be checked by verifying that Equation (𝐵𝑗) is not satisfied for 𝑘1 = 1, 𝑘2 = 2 as indeed 1∕12 =
8

𝑣2 <max{𝑣3, 𝑣4} = 1∕8. In essence, Equations (𝐴𝑗), (𝐵𝑗) and (𝐶𝑗) allow one to check whether a given sequence {𝑘1, … , 𝑘𝑚} can or 
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Table 1

Possible parameter values giving modal rankings of Example 4.

𝑣 = (𝑣1 , 𝑣2, 𝑣3, 𝑣4) 𝜏 = (𝜏(1), 𝜏(2), 𝜏(3), 𝜏(4)) ∈ argmax𝜏′∈ 𝑃𝑣 (𝜏′)

(5∕8, 1∕12, 1∕6, 1∕8) (1,3,4,2)
(5∕8, 1∕12, 1∕12, 5∕24) (1,4,2,3)
(5∕8, 1∕12, 1∕12, 5∕24) (1,4,3,2)
(3∕8, 1∕12, 1∕6, 3∕8) (4,1,3,2)

cannot be continued into an E-admissible ranking, and provides a set of mechanisms at the basis of the recursive Algorithms 1 and 2
given below. ◊

Algorithm. We propose an efficient algorithm based on Equations (𝐴𝑗), (𝐵𝑗) and (𝐶𝑗) used in Proposition 2 to check whether there 
is an E-admissible ranking with a given initial segment. More precisely, the algorithm consists in using these equations recursively: to 
check whether there is an E-admissible ranking starting with (𝑘1, … , 𝑘𝑚) it suffices to check whether there is an E-admissible ranking 
starting with (𝑘1, … , 𝑘𝑚−1) and whether the Equations (𝐴𝑗), (𝐵𝑗) and (𝐶𝑗) hold for 𝑗 =𝑚.

Algorithms 1 and 2 provide pseudocodes describing a recursive method to find all E-admissible rankings given an interval-valued 
set Θ. Note that due to the pruning strategy, the algorithm is polynomial in the number of E-admissible options (hence finding one 
E-admissible option is fast), however this number may still be |Λ|! in the worst case, and we may need to count that many rankings.

Algorithm 1 Find the E-admissible rankings opt𝑛.
Require: probability intervals [𝑣

𝑘
, 𝑣𝑘] for 𝑘 in {1, … , 𝑛}

Ensure: {[𝑣
𝑘
, 𝑣𝑘] ∶ 𝑘 ∈ {1, … , 𝑛}} coherent

opt𝑛 ← ∅
for all 𝑘1 ∈ {1, … , 𝑛} do

Recur(1, (𝑘1))
end for

Algorithm 2 Recur(𝑗, (𝑘1, … , 𝑘𝑗 )).
if 𝑗 = 𝑛 − 1 then

append the unique 𝑘𝑛 ∈ {1, … , 𝑛} ⧵ {𝑘1, … , 𝑘𝑛−1} to the end of (𝑘1, … , 𝑘𝑛−1)
add (𝑘1 , … , 𝑘𝑛) to opt𝑛 ⊳we found a solution.

else

for all 𝑘𝑗+1 ∈ {1, … , 𝑛} ⧵ {𝑘1, … , 𝑘𝑗} do

if Equations (𝐴𝑗+1), (𝐵𝑗+1) and (𝐶𝑗+1) hold then

append 𝑘𝑗+1 to the end of (𝑘1, … , 𝑘𝑗 )
Recur(𝑗 + 1, (𝑘1, … , 𝑘𝑗+1))

end if

end for

end if

4. Application to label ranking

The previous sections have explored how cautious robust inference can be made when we only have imprecise knowledge about 
the parameters of a Plackett–Luce model. This section presents a possible use of our approach in a supervised machine learning 
problem, and discusses some possible ways to estimate the set of parameters from data.

Whereas supervised classification consists in mapping instances 𝐱 issued from an instance space  to single (preferred) labels of 
the space Λ = {𝜆1, … , 𝜆𝑛} of possible classes, we address here a more complex issue called label ranking, where we want to map any 
instance 𝐱 ∈  to a total order on the labels ≻𝐱 on Λ.

The task in label ranking is the same as in usual classification, i.e. using a set of training instances (𝐱𝑖, 𝜏𝑖), 𝑖 ∈ {1, … , 𝑚} to estimate 
the theoretical conditional probability measure 𝑃𝐱 ∶ 2 → [0, 1] associated to an instance 𝐱 ∈  . Ideally, observed outputs 𝜏𝑖 should 
be complete orders over Λ; this is however seldom the case. In order to prepare for this, we sometimes allow training instances 𝜏𝑖 to 
be incomplete (i.e., partial orders over Λ).

In this case, we may apply the approach presented in Section 3.1 in order to infer an IPL model from such partial data. We will use 
the contour likelihood to get the parameter set corresponding to a specific instance 𝐱, since efficient maximum likelihood estimation 
(MLE) methods can be used to infer a PL model. For justifications on the use of the contour likelihood to obtain sets of parameters 
9

as estimates, we refer for example to [31,25,6,5].
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4.1. Estimation method

We will now describe our estimation method in different steps, in order to obtain a parameter set Θ from observed data. Assume 
that we have observed a sample of 𝐾 rankings  = {𝜏1, … , 𝜏𝐾}, with 𝑀𝑖 the number of ranked labels in 𝜏𝑖. Given a strength vector 
𝑣, the probability to observe  is:

𝑃 ( |𝑣) = 𝐾∏
𝑖=1

𝑀𝑖∏
𝑚=1

𝑣𝜏𝑖(𝑚)∑𝑀𝑖
𝑗=𝑚 𝑣𝜏𝑖(𝑗)

. (13)

4.1.1. Maximum likelihood estimation

Finding the Maximum Likelihood Estimation (MLE) of 𝑣 comes down to maximizing Equation (13), or equivalently to doing the 
same with the log-likelihood:

𝐿𝑜𝑔𝑙(𝑣) =
𝐾∑
𝑖=1

𝑀𝑖∑
𝑚=1

[
log(𝑣𝜏𝑖(𝑚)) − log

𝑀𝑖∑
𝑗=𝑚

𝑣𝜏𝑖(𝑗)

]
. (14)

Unfortunately, no analytical solution to finding the MLE parameters of the PL model exists. Nevertheless, multiple efficient 
optimisation methods have been proposed in the literature. One of them, which we will use here, is the Minorisation-Maximisation 
(MM) algorithm by [18]. It is a generalisation of the Expectation–Maximisation (EM) algorithm. The MM algorithm is an iterative 
procedure which aims to maximise in each iteration a lower bound for the log-likelihood:

𝑄𝑘(𝑣) =
𝐾∑
𝑖=1

𝑀𝑖∑
𝑚=1

⎡⎢⎢⎣log(𝑣𝜏𝑖(𝑚)) −
log

∑𝑀𝑖

𝑗=𝑚 𝑣𝜏𝑖(𝑗)

log
∑𝑀𝑖

𝑗=𝑚 𝑣
(𝑘)
𝜏𝑖(𝑗)

⎤⎥⎥⎦ , (15)

where 𝑣(𝑘) is the estimation of 𝑣 during the 𝑘-th iteration. When the parameters are fixed, the maximisation of 𝑄𝑘 can be solved 
analytically and the algorithm provably converges to the MLE estimate 𝑣∗ of 𝑣.

4.1.2. Set estimation via the contour likelihood

Given parameter values2 𝑣 ∈ int(Σ) and the likelihood function 𝑙(𝑣), the contour likelihood is:

𝑙∗(𝑣) =
𝑙(𝑣)

max𝑢∈Σ 𝑙(𝑢)
=
𝑙(𝑣)
𝑙(𝑣∗)

. (16)

By construction, 𝑙∗(𝑣) take values in ]0, 1]. The closer 𝑙∗ is to 1, the closer 𝑣 is to a maximum of the likelihood function.
We can therefore naturally obtain imprecise estimates by considering the regions of the parameter space obtained by “cutting” 

the contour likelihood. Given 𝛽 in [0, 1], the 𝛽-cut of the contour likelihood, written 𝐵∗
𝛽
, is defined by

𝐵∗
𝛽
=
{
𝑣 ∈ Σ ∶ 𝑙∗(𝑣) ≥ 𝛽

}
.

We stress here that the choice of 𝛽 directly influences the precision (and thus the robustness) of the model: starting with 𝐵∗
1 = 𝑣

∗, 
which generally leads to a precise PL model, the IPL model then becomes less and less precise with decreasing 𝛽, possibly leading 
to partial (and even empty) predictions. The choice of 𝛽 is thus directly linked to how imprecise we want our predictions to be. 
The interest of using 𝛽 is that it allows us to control the precision/accuracy trade-off with a single parameter. Choosing the right 
value for this parameter therefore depends on how much precision an end-user or decision maker is willing to trade to obtain more 
robust/accurate predictions. As in other imprecise probabilistic classifiers [11], 𝛽 can also be used as a way to “measure” how robust 
a given precise prediction is: if we need to decrease 𝛽 a lot to make the maximum likelihood prediction imprecise, then this means 
the initial prediction was rather robust, else this may mean that the precise prediction relies on rather weak information.

4.1.3. Imprecise predictions

Once 𝐵∗
𝛽

is determined, for any test instance 𝐱 to be processed, we can easily obtain an imprecise prediction 𝜏 in the form of a 
partial ranking using the results of Section 3.1: we will retrieve 𝜏 such that 𝜆𝑖 ≻ 𝜆𝑗 for all 𝑣𝑘 ∈ 𝐵∗

𝛽
.

Example 5. Let us assume that we want to determine the ranking 𝜏 of an instance 𝐱 through a learning process, i.e. we predict the 
ranking of the instance 𝐱 with the rankings of some other instances. To do so, we pick the five closest neighbours of 𝐱 according 
to a distance (for example the Euclidean distance), as a classical scheme to get a local model estimation. Three of these neighbours 
have the associated ranking (𝜆2, 𝜆1, 𝜆3) and two have the associated ranking (𝜆1, 𝜆3, 𝜆2). Based on these neighbours, the ranking 
𝜏 predicted by maximum likelihood is (𝜆1, 𝜆2, 𝜆3). Fig. 5 displays the corresponding contour likelihood function, modelled using 
20,000 randomly generated strengths 𝑣𝑘 according to a Dirichlet distribution with 𝛼 = 5𝑣opt, with 𝑣opt being the strength of the 
10

2 As before, we use the interior int(Σ) of Σ to ensure that log∑𝑀𝑖

𝑗=𝑚 𝑣𝜏𝑖 (𝑗) is well-defined.
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Fig. 5. Full contour likelihood function.

Fig. 6. Beta-cut 𝐵∗
0.9 .

Fig. 7. Beta-cut 𝐵∗
0.5 .

optimal Plackett–Luce model. Note that only 𝑣1 and 𝑣2 are represented in the Figure, since 𝑣3 = 1 − 𝑣1 − 𝑣2, meaning we have only 
two degrees of freedom and that all strength vectors can be represented on a plane.

The contour likelihood function takes values between 0 and 1, and its value decreases when the generated strengths 𝑣𝑘 are far 
from the optimal strength 𝑣opt. Moreover, it is possible to directly interpret the preferences between objects in Fig. 5. Each median 
line corresponds to a situation where an object is equally preferred to another one. For example, 𝑣1 = 𝑣2 indicates that 𝜆1 and 𝜆2
are equally preferred. The intersection of the medians corresponds to the situation 𝑣 = [1∕3, 1∕3, 1∕3], where all objects are equally 
preferred. In such a situation, all rankings are equally probable.

We can make an imprecise prediction on the ranking 𝜏 by “cutting” the contour likelihood function, ending up with a beta-cut 
𝐵∗
𝛽
. In this example, we first take 𝛽 = 0.9, giving a rather precise prediction, to the detriment of robustness. As in the precise case, 

we obtain 𝜏 = (𝜆1, 𝜆2, 𝜆3), as observed from Fig. 6: all the generated strengths 𝑣𝑘 such that 𝐿∗
𝑘
≥ 0.9 stay in the same area delimited 

by the three median lines. The binary relations 𝜆1 ≻ 𝜆2, 𝜆2 ≻ 𝜆3 and 𝜆1 ≻ 𝜆3 (that follows from the two previous ones) give the same 
final ranking as the precise approach.

Using a new beta-cut 𝐵∗
𝛽

with a coefficient 𝛽 = 0.5, we obtain a different prediction. We observe from Fig. 7 that a majority 
of generated strengths stay in the same delimited area, yet some generated strengths are outside this area, changing the predicted 
11

ranking or order: over the median 𝑣1 = 𝑣2, some generated strengths indicate that we could have 𝜆2 ≻ 𝜆1; and under the median 
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𝑣2 = 𝑣3, some generated strengths indicate that we could have 𝜆3 ≻ 𝜆2. In our approach, a binary relation 𝜆𝑖 ≻𝐱 𝜆𝑗 between two 
objects is kept if it is common to all generated strengths. In our case, this means that the prediction is reduced to 𝜆1 ≻ 𝜆3, as 𝑣1 = 𝑣3
is the only median which does not intersect with 𝐵∗

0.5.

4.2. Experimental setting

4.2.1. Likelihood approximation

In order to obtain the observations from which the contour likelihood is computed via (16), we consider here the method proposed 
by [8]. The approach is instance-based: for any 𝐱 ∈  , the predictions are made locally using its nearest neighbours. Let 𝐾 (𝐱) stand 
for the set of nearest neighbours of 𝐱 in the training set, each neighbour 𝐱𝑖 ∈𝐾 (𝐱) being associated with a (possibly incomplete) 
ranking 𝜏𝑖.

We model the contour likelihood by generating multiple strengths 𝑣 according to a Dirichlet distribution with parameter 𝛽 = 𝛾𝑣∗, 
where 𝑣∗ is the MLE obtained with the best PL model (or equivalently, the best strength 𝑣) and 𝛾 > 0 is a coefficient which makes it 
possible to control the concentration of parameters generated around 𝑣∗.

4.2.2. Evaluation

When the observed and predicted rankings 𝜏 and 𝜏̂ are complete, various accuracy measures [17] have been proposed to measure 
how close they are to each other (0/1 accuracy, Spearman’s rank, etc.). Here, we retain Kendall’s Tau:

𝐴(𝜏, 𝜏̂) = 𝐶 −𝐷
𝑛(𝑛−1)∕2

, (17)

where 𝐶 and 𝐷 are respectively the numbers of concordant and discordant pairs in 𝜏 and 𝜏̂. In the case of imprecise predictions 𝜏̂, 
the usual quality measures can be decomposed into two components [10]: correctness (CR), measuring the accuracy of the predicted 
comparisons, and completeness (CP):

𝐶𝑅(𝜏, 𝜏̂) = 𝐶 −𝐷
𝐶 +𝐷

and 𝐶𝑃 (𝜏, 𝜏̂) = 𝐶 +𝐷
𝑛(𝑛−1)∕2

, (18)

where 𝐶 and 𝐷 are the same as in Equation (17). Should 𝜏̂ be complete, 𝐶 + 𝐷 = 𝑛(𝑛−1)∕2, 𝐶𝑅(𝜏, ̂𝜏) = 𝐴(𝜏, ̂𝜏) and 𝐶𝑃 (𝜏, ̂𝜏) = 1; 
while 𝐶𝑅(𝜏, ̂𝜏) = 1 and 𝐶𝑃 (𝜏, ̂𝜏) = 0 if 𝜏̂ is empty (since no comparison is done). Let us note a partial ranking has usually a higher 
correctness than its complete equivalent, suggesting that a partial ranking may be desirable if we want to avoid incorrectly ranked 
labels.

Example 6. Let us suppose we want to estimate the ranking 𝜏 = (𝜆2, 𝜆3, 𝜆1). We predict two rankings: a complete ranking 𝜏̂1 =
(𝜆3, 𝜆2, 𝜆1) and a partial ranking 𝜏̂2 = (𝜆3, 𝜆1). We have 𝑛(𝑛−1)∕2 = 3 and the number of concordant and discordant pairs are 𝐶1 = 2
and 𝐷1 = 1 for 𝜏̂1, as we correctly predicted that 𝜆3 ≻ 𝜆1 and 𝜆2 ≻ 𝜆1, but also incorrectly predicted that 𝜆3 ≻ 𝜆2 ; and 𝐶2 = 1 and 
𝐷2 = 0 for 𝜏̂2, since 𝜆3 ≻ 𝜆1 is correctly predicted, and we did not rank 𝜆2.

We can now determine the correctness and completeness of each predicted ranking. We have 𝐶𝑅(𝜏, 𝜏1) = 2−1∕2+1 = 2∕3 and 
𝐶𝑃 (𝜏, 𝜏1) = 2+1∕3 = 1, while 𝐶𝑅(𝜏, 𝜏2) = 1−0∕1+0 = 1 and 𝐶𝑃 (𝜏, 𝜏2) = 1+0∕3 = 1∕3: the ranking 𝜏1 is complete but partially incorrect, 
while the ranking 𝜏2 is fully correct (no label is incorrectly ranked) but does not rank all labels.

4.2.3. Thresholding

In the experiments, we compare our imprecise approach based on parameter sets to the abstention scheme proposed by [9]. Given 
a precise PL model with strength vector 𝑣, this latter approach uses the probability 𝑃 (𝜆𝑖 ≻ 𝜆𝑗 ) of choosing the label 𝜆𝑖 over the label 
𝜆𝑗 , given by:

𝑃 (𝜆𝑖 ≻ 𝜆𝑗 ) =
𝑣𝑖

𝑣𝑖 + 𝑣𝑗
, (19)

indicating that 𝜆𝑖 ≻ 𝜆𝑗 only if 𝑃 (𝜆𝑖 ≻ 𝜆𝑗 ) ≥ 𝛼, with 𝛼 ∈ [0.5, 1]. For 𝛼 = 0.5, the prediction is simply the ordering induced by 𝑣, and 
for 𝛼 = 1, we retrieve the empty order. It has been proven in [9] that considering all values in-between provides a set of partial 
orders, i.e., a set of partial predictions whose imprecision grows with 𝛼.

4.3. Experimental results

In the experiments,3 we use various datasets in order to compare our approach with that of [9]. They were adapted from classical 
datasets in [8], except for the SUSHI dataset, a standard in preference learning, in which the complete rankings over 10 types of 
sushi expressed by 5000 customers are recorded.4 The datasets and their properties are quickly presented in Table 2, while more 
details on how these datasets were generated can be found in [8]. The number of attributes is only relevant to determine the closest 

3 https://github .com /LoicAdam /Imprecise _Plackett _Luce/.
12

4 Available on http://www .kamishima .net /sushi/.

https://github.com/LoicAdam/Imprecise_Plackett_Luce/
http://www.kamishima.net/sushi/
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Table 2

Datasets and their properties (the type refers to the original problem 
type: A for classification and B for regression.

Dataset Type # instances # attributes # labels

Authorship A 841 70 4
Bodyfat B 252 7 7
Glass A 214 9 6
Housing B 506 6 6
Iris A 150 4 3
Stock B 950 5 5
Sushi A 5000 11 10
Vehicle A 846 18 4
Vowel A 528 10 11
Wine A 178 13 3
Wisconsin B 194 16 16

Fig. 8. Comparison of methods on Wisconsin with no perturbations.

neighbours of each instance, while the number of labels to rank is the heart of our problem: the more labels we have to rank, the 
more difficult the problem is, as we have to estimate the likelihood function in a higher-dimensional space. According to [8], the type 
of the dataset influences the difficulty of the prediction problem: in general, the correctness should be overall higher for datasets 
coming from classification problems. Nevertheless, we did not notice any additional difference on the ranking problem with our 
contour likelihood approach.

In order to limit the size of this section to a reasonable level, we only focus on a few datasets that are representative of all our 
experimental results, in the sense that results for other datasets follow the same trends. Experimental results on the other datasets 
can be found in Appendix B.

4.3.1. Comparison

Here, we compare our approach based on the contour likelihood function with the abstention approach existing in the literature, 
using the instance-based algorithm. Nearest neighbours are identified based on the Euclidean distance. The optimal number of 
neighbours 𝐾 ∈ {5, 10, 15, 20} is determined via cross-validation. For each likelihood contour function, 200 points are generated 
according to a Dirichlet distribution with coefficient 𝛾 ∈ {1, 10}. A 10-Fold cross validation is repeated 5 times for each setting. 
Moreover, a 95% confidence interval is provided, based on a Gaussian assumption. To compare both methods for different values of 
completeness, we used different thresholds and different values of 𝛽.

We further evaluate the robustness of the procedures. First, we delete some labels in each ranking, by choosing at random for each 
label whether it should be kept or not. We fix the probability of deleting a label to 𝑝 ∈ [0, 1]. In a second step, we swap neighbouring 
pairs of labels (we only consider neighbouring labels in a ranking to avoid unrealistic perturbations of the data). For example, 𝜆𝜏(2)
can be swapped only with 𝜆𝜏(1) and 𝜆𝜏(3). Each neighbouring label pair is swapped with probability 𝑝 ∈ [0, 1]. Note that the order of 
the swaps is a random permutation, to allow for any label 𝜆𝜏(𝑖) to be swapped with 𝜆𝜏(𝑗), ∀𝑖, 𝑗 ∈ Λ.

As seen in Figs. 8 and 9, the contour likelihood-based approach is on par with the method based on abstention, with no method 
giving a significantly higher correctness for a given completeness value. This was the case with all datasets used in our experiments. 
As expected, when we have complete rankings, with 𝛽 = 1 or 𝑡 = 0.5 depending on the method, the correctness is rather low. 
Nevertheless, when abstention is allowed, correctness increases until it reaches one for a completeness of zero.

Figs. 10 and 11 show that the method is also on par even when the datasets are perturbed, meaning the correctness for a given 
completeness value is not higher for a given method, whether it be due to missing labels or swapped labels. It is also possible to 
notice that for a given completeness level, the correctness is lower than without noise. On average, the greater the perturbation is, 
the lower the average correctness is.

The results were similar on all datasets, with both methods being generally on par (see Appendix B.1). This indicates that a 
13

method based on the contour likelihood function can be used to make robust inferences for label ranking.
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Fig. 9. Comparison of methods on Sushi with no perturbations.

Fig. 10. Comparison on Wisconsin with a missingness of 60%.

Fig. 11. Comparison on Sushi with 60% of swapped label pairs.

4.3.2. Influence of the amount of data

In this experiment, instead of adding perturbations to the training set, we reduce the training set size, in order to assess the 
influence of the amount of used data on the final result. Starting with a full training set, some points are randomly and progressively 
removed, until we obtain a training set containing only 10% of the original points. Moreover, in order to reflect the possible scarcity 
of data, we no longer systematically take 𝐾 nearest neighbours to estimate the likelihood (as otherwise they would always rely on 
the same amount of data), but rather consider all neighbours within a given radius of the instance to classify. For this purpose, we 
compute the median 𝑀 of all distances 𝑑(𝐱𝑖, 𝐱𝑗 ) between all pairs of training instances (𝐱𝑖, 𝐱𝑗 ). We then use 𝑀 as a threshold in 
order to identify the training instances used to estimate the likelihood. If 𝐱 is the instance for which we want to predict a ranking, 
we restrict the training set to 𝑡 = {𝐱𝑖 ∶ 𝑑(𝐱, 𝐱𝑖) ≤𝑀, 𝑖 = 1, … , 𝑚}.

The parameters for the likelihood contour function are the same as previously, and we still perform a 10-Fold cross validation 
repeated 5 times, with a confidence interval of 95%. A beta-cut of 10% is used in the likelihood approach. For the abstention 
approach, a threshold 𝑡 ∈ [0.5, 0.6] is taken such that both methods have a similar starting point for completeness and correctness.

We observe in Fig. 12 that completeness decreases when using the likelihood contour approach, while remaining at the same 
level with the abstention approach. This suggests that our approach tends to be more cautious when the available training data are 
14

scarcer. This property, i.e. the level of precision of the output reflects the amount of epistemic uncertainty, seems desirable. However, 
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Fig. 12. Completeness for Vehicle.

Fig. 13. Correctness for Vehicle.

Fig. 14. Completeness for Iris.

it should be noted that both methods have comparable accuracies in Fig. 13, unless the training set becomes very small, indicating 
that in this case cautiousness may only be needed in situations of ambiguity.

One can check Appendix B.2 to see that the same behaviour is observed for all of our datasets: our approach is sensitive to the 
change in data quantity, while the thresholding approach is not. Even worse, as data become scarcer, the thresholding approach 
tends to provide more complete but also less accurate predictions. For instance, Figs. 14 and 15 show that as completeness decreases, 
correctness notably increases. In other terms, for these data, abstaining is a better alternative than predicting when data are scarce. 
This behaviour obviously depends on the structure of the data: when many instances with clear natural groups are available, cau-
tiousness is likely to have a marginal interest. However, with few training instances (e.g. in the Iris data) or when groups are not well 
separated, our approach, being more cautious, clearly avoids making erroneous predictions for some instances.

Table 3, which summarises the results, confirms this observation. Usually, the two approaches start with the same completeness 
and correctness values.5 Therefore, CpStart (CrStart respectively) is the average of the two starting completeness (correctness respec-
tively) values. We can see that for the likelihood approach, completeness systematically decreases with data becoming scarcer, while 

5 We observe a maximal difference of 0.02 can exist, as it seems there are no explicit relations between 𝛽 (beta-cut for likelihood approach) and 𝑡 (threshold for 
15

abstention approach).
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Fig. 15. Correctness for Iris.

Table 3

Influence of the amount of training data on completeness and correctness 
(𝛽 = 0.1). Here, 𝐶Start stands for average values with no missing data, 𝐶Lik

and 𝐶Abs for average values with the likelihood and abstention methods 
with 80% missing data. Bold letters indicate the best scores between the 
likelihood (Lik) and the abstention approach (Abs).

CpStart CpLik CpAbs CrStart CrLik CrAbs

Authorship .955 .912 .953 .730 .754 .723
Bodyfat .365 .299 .581 .284 .206 .135
Glass .989 .978 .990 .706 .718 .713
Housing .826 .646 .830 .537 .621 .532
Iris .835 .558 .830 .770 .871 .692
Stock .925 .877 .885 .569 .580 .542
Vehicle .886 .767 .891 .771 .805 .742
Vowel .883 .741 .877 .412 .434 .394
Wine .696 .553 .770 .946 .893 .779
Wisconsin .685 .488 .766 .552 .476 .380

correctness systematically increases. This is far from being true for the abstention approach, whose completeness can evolve in both 
ways (e.g., increases for Bodyfat, decreases for Stock), and whose correctness always decreases. Overall, this confirms that one of the 
interests of our approach, or of imprecise probabilistic estimation tools, lies in its sensitivity to the amount of available information, 
and the fact that this is reflected through the size of the set Θ of retained models.

5. Conclusions and perspectives

In this paper, we have addressed the problem of performing inference and making predictions with the well known Plackett–Luce 
model, a parametric ranking model. We have considered the case where the parameter vector is imprecise, in which case a set of 
Plackett–Luce models is valid. In this case, we have shown that imprecise predictions can be made in the form of sets of rankings. We 
have proposed two efficient inference methods: one allows for computing an outer approximation of the set of Walley-Sen maximal 
rankings and thus also of E-admissible rankings; another makes it possible to exactly compute the set of E-admissible rankings, if 
the parameters of the IPL model are each defined by lower and upper bounds. We have demonstrated the interest of our strategy 
for label ranking problems, showing that in presence of epistemic uncertainty, cautious inference—i.e. abstaining to make precise 
predictions when training data are scarce—is rewarding.

Possible future investigations may focus on improving the estimation strategy, for example by extending Bayesian approaches 
through the consideration of sets of priors [16]; or by developing a natively imprecise likelihood estimate, e.g. by coupling recent 
estimation algorithms using stationary distribution of Markov chains [24] with recent works on imprecise Markov chains [19].

Additionally, since the Plackett–Luce is known to be strongly linked to particular random utility models [33,3] (RUM), that 
models preferences between objects as real-valued random variables, it would be interesting to investigate what becomes of this 
relationship when making the RUM imprecise (in our case, considering Gumbel distributions with imprecise parameters).
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Appendix A. Proofs

Proposition 1. Consider any parametrisation Θ =
(⨉𝑛

𝑘=1[𝑣𝑘, 𝑣𝑘]
)
∩ int(Σ) of an imprecise Plackett–Luce model, and any ranking 𝜏 in . 

Then 𝜏 is E-admissible—in other words, 𝜏 ∈
⋃
𝑣∈Θ argmax𝜏′∈ 𝑃𝑣 (𝜏′)—if and only if there is a 𝑘 in {1, … , 𝑛} such that:

1 −
𝑘−1∑
𝓁=1

min{𝑣𝜏(1),… , 𝑣𝜏(𝓁)} −
𝑛∑

𝓁=𝑘+1
max{𝑣

𝜏(𝓁),… , 𝑣
𝜏(𝑛)} ∈ [max{𝑣

𝜏(𝑘),… , 𝑣
𝜏(𝑛)},min{𝑣𝜏(1),… , 𝑣𝜏(𝑘)}] (11)

and

𝑣
𝜏(𝓁) ≤min{𝑣𝜏(1),… , 𝑣𝜏(𝓁)} for all 𝓁 in {1,… , 𝑘− 1}, and 𝑣𝜏(𝓁) ≥max{𝑣

𝜏(𝓁),… , 𝑣
𝜏(𝑛)} for all 𝓁 in {𝑘+ 1,… , 𝑛}. (12)

Proof 1 (of Proposition 1, recalled above). For sufficiency, assume that there is a 𝑘 in {1, … , 𝑛} such that Equations (11) and (12)
hold. Then

1. By letting 𝑣𝜏(𝓁) ∶= min{𝑣𝜏(1), … , 𝑣𝜏(𝓁)} for any 𝓁 in {1, … , 𝑘 − 1}, 𝑣𝜏(𝓁) ∶= max{𝑣
𝜏(𝓁), … , 𝑣

𝜏(𝑛)} for any 𝓁 in {𝑘 + 1, … , 𝑛}, and 
also 𝑣𝜏(𝑘) ∶= 1 −

∑𝑛
𝓁=1,𝓁≠𝑘 𝑣𝜏(𝓁), then by definition 

∑𝑛
𝓁=1 𝑣𝜏(𝓁) = 1, so the elements in 𝑣 sum up to 1.

2. Furthermore, for all 𝓁 in {1, … , 𝑘 − 1}, we see that 𝑣𝜏(𝓁) ≤ 𝑣𝜏(𝓁) by definition, and for all 𝓁 in {𝑘 + 1, … , 𝑛}, we similarly find 
𝑣𝜏(𝓁) ≥ 𝑣𝜏(𝓁). Equation (12) tells us in addition that 𝑣𝜏(𝓁) ≥ 𝑣𝜏(𝓁) for all 𝓁 in {1, … , 𝑘 − 1}, and 𝑣𝜏(𝓁) ≤ 𝑣𝜏(𝓁) for 𝓁 in {𝑘 +1, … , 𝑛}, 
whence 𝑣𝜏(𝓁) ∈ [𝑣

𝜏(𝓁), 𝑣𝜏(𝓁)] ⊆ (0, 1) for all 𝓁 in {1, … , 𝑛} ⧵ {𝑘}.

3. Since 𝑣𝜏(𝑘) = 1 −
∑𝑘−1

𝓁=1 min{𝑣𝜏(1), … , 𝑣𝜏(𝓁)} −
∑𝑛

𝓁=𝑘+1 max{𝑣
𝜏(𝓁), … , 𝑣

𝜏(𝑛)}, it follows from Equation (11) that the strength 𝑣𝜏(𝑘)
belongs to

[max{𝑣
𝜏(𝑘),… , 𝑣

𝜏(𝑛)},min{𝑣𝜏(1),… , 𝑣𝜏(𝑘)}],

which is equal to

[max{𝑣𝜏(𝑘+1), 𝑣𝜏(𝑘)},min{𝑣𝜏(𝑘−1), 𝑣𝜏(𝑘)}] ⊆ [𝑣
𝜏(𝑘), 𝑣𝜏(𝑘)] ⊆ (0,1).

Therefore 𝑣 belongs to int(Σ).
We will show that the values in 𝑣 are ranked according to 𝜏, because then Equation (2) guarantees that 𝜏 is E-admissible. To this 

end, let us first remark that 𝑣𝜏(1) ≥ 𝑣𝜏(2) ≥⋯ ≥ 𝑣𝜏(𝑘−1) because their defining minima are taken over increasingly bigger supersets, 
and similarly that 𝑣𝜏(𝑛) ≤ 𝑣𝜏(𝑛−1) ≤⋯ ≤ 𝑣𝜏(𝑘+1) because their defining maxima are taken over increasingly bigger supersets. Since we 
have already inferred that 𝑣𝜏(𝑘) belongs to

[max{𝑣
𝜏(𝑘),… , 𝑣

𝜏(𝑛)},min{𝑣𝜏(1),… , 𝑣𝜏(𝑘)}] = [max{𝑣𝜏(𝑘+1), 𝑣𝜏(𝑘)},min{𝑣𝜏(𝑘−1), 𝑣𝜏(𝑘)}] ⊆ [𝑣𝜏(𝑘+1), 𝑣𝜏(𝑘−1)],

we infer that 𝑣𝜏(𝑘+1) ≤ 𝑣𝜏(𝑘) ≤ 𝑣𝜏(𝑘−1), whence indeed 𝑣𝜏(1) ≥ 𝑣𝜏(2) ≥⋯ ≥ 𝑣𝜏(𝑛−1) ≥ 𝑣𝜏(𝑛).
For necessity, assume that 𝜏 is E-admissible, so that there is a parametrisation 𝑣 in Θ such that 𝑣𝜏(1) ≥ 𝑣𝜏(2) ≥⋯ ≥ 𝑣𝜏(𝑛−1) ≥ 𝑣𝜏(𝑛). 

We let 𝛼 ∶= min{𝑣𝜏(1) − 𝑣𝜏(1), 𝑣𝜏(𝑛) − 𝑣𝜏(𝑛)} ∈ℝ≥0, and replace 𝑣𝜏(1) with 𝑣𝛼
𝜏(1) ∶= 𝑣𝜏(1) + 𝛼, and similarly, 𝑣𝜏(𝑛) with 𝑣𝛼

𝜏(𝑛) ∶= 𝑣𝜏(𝑛) − 𝛼. 
Note that this replacement does not alter the order: 𝑣𝛼

𝜏(1) ≥ 𝑣𝜏(2) ≥ ⋯ ≥ 𝑣𝜏(𝑛−1) ≥ 𝑣𝛼𝜏(𝑛), and furthermore, it still sums to 1: 𝑣𝛼
𝜏(1) +

𝑣𝜏(2) +⋯ + 𝑣𝜏(𝑛−1) + 𝑣𝛼𝜏(𝑛) = 𝑣𝜏(1) + 𝛼 + 𝑣𝜏(2) +⋯ + 𝑣𝜏(𝑛−1) + 𝑣𝜏(𝑛) − 𝛼 = 1. We also infer that 𝑣𝛼
𝜏(1) ≤ 𝑣𝜏(1) and 𝑣𝛼

𝜏(𝑛) ≥ 𝑣𝜏(𝑛), with one 
the inequalities being an equality, guaranteeing that the new parametrisation also belongs to Θ. All this means that 𝜏 maximises the 
probability under the new parametrisation as well, so we may assume without loss of generality that 𝑣𝜏(1) = 𝑣𝜏(1) or 𝑣𝜏(𝑛) = 𝑣𝜏(𝑛). In 
17

other words, we may assume that 𝑣𝜏(1) or 𝑣𝜏(𝑛) is extreme, which means in this case being equal to 𝑣𝜏(1) or 𝑣
𝜏(𝑛) respectively.
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Now there are two cases: either (i) 𝑣𝜏(1) is extreme, i.e. 𝑣𝜏(1) = 𝑣𝜏(1), or (ii) 𝑣𝜏(𝑛) is extreme, i.e. 𝑣𝜏(𝑛) = 𝑣𝜏(𝑛). If (i), we let 
𝛽 ∶= min{min{𝑣𝜏(1), 𝑣𝜏(2)} −𝑣𝜏(2), 𝑣𝜏(𝑛) −𝑣𝜏(𝑛)} ∈ℝ≥0 and replace 𝑣𝜏(2) with 𝑣𝛽

𝜏(2) ∶= 𝑣𝜏(2) +𝛽, and similarly, 𝑣𝜏(𝑛) with 𝑣𝛽
𝜏(𝑛) ∶= 𝑣𝜏(𝑛) −𝛽. 

Then, again, this replacement does not alter the order, and sums to 1. We also infer that 𝑣𝛽
𝜏(2) ≤min{𝑣𝜏(1), 𝑣𝜏(2)} and 𝑣𝛽

𝜏(𝑛) ≥ 𝑣𝜏(𝑛), with 
one the inequalities being an equality, guaranteeing that the new parametrisation also belongs to Θ. So we have found yet another 
parametrisation for which 𝜏 maximises the associated probability. We therefore may assume without loss of generality that 𝑣𝜏(2) is 
extreme—equal to min{𝑣𝜏(1), 𝑣𝜏(2)}—or 𝑣𝜏(𝑛) is extreme—equal to 𝑣

𝜏(𝑛). If (ii), a similar reasoning as above leads us to conclude that 
𝑣𝜏(1) is extreme—equal to 𝑣𝜏(1)—or 𝑣𝜏(𝑛−1) is extreme—equal to max{𝑣

𝜏(𝑛−1), 𝑣𝜏(𝑛)}. In any case, we infer that the first 𝑖 and the last 
𝑗 ∶= 2 − 𝑖 (with 𝑖 in {0, 1, 2}) of 𝑣𝜏(1), 𝑣𝜏(2), . . . , 𝑣𝜏(𝑛) are extreme.

We repeat this process iteratively, each time considering the smallest index 𝑖 + 1 such that 𝑣𝜏(𝑖+1) is non-extreme, and the biggest 
index 𝑗 − 1 such that 𝑣𝜏(𝑗−1) is non-extreme:

𝑣𝜏(1) = 𝑣𝜏(1), 𝑣𝜏(2) = min{𝑣𝜏(1), 𝑣𝜏(2)}, … , 𝑣𝜏(𝑖) = min{𝑣𝜏(1),… , 𝑣𝜏(𝑖)},

𝑣𝜏(𝑛) = 𝑣𝜏(𝑛), 𝑣𝜏(𝑛−1) = max{𝑣
𝜏(𝑛), 𝑣𝜏(𝑛−1)}, … ,

𝑣𝜏(𝑗) = max{𝑣
𝜏(𝑛), 𝑣𝜏(𝑛−1),… , 𝑣

𝜏(𝑗)}.

If 𝑖 + 1 < 𝑗 − 1, then, using a similar reasoning as above, without loss of generality we may replace 𝑣𝜏(𝑖+1) or 𝑣𝜏(𝑗−1) with its 
extreme variant—meaning that 𝑣𝜏(𝑖+1) = min{𝑣𝜏(1), … , 𝑣𝜏(𝑖+1)} or 𝑣𝜏(𝑗−1) = max{𝑣

𝜏(𝑛), 𝑣𝜏(𝑛−1), … , 𝑣
𝜏(𝑗−1)}. We therefore may assume 

that 𝑖 + 1 = 𝑗 − 1 =∶ 𝑘. Clearly, 𝑣𝜏(𝑘) ∈ [𝑣
𝜏(𝑘), 𝑣𝜏(𝑘)], but since 𝑣 is ordered according to 𝜏, we furthermore infer that 𝑣𝜏(𝑘+1) ≤ 𝑣𝜏(𝑘) ≤

𝑣𝜏(𝑘−1), whence 𝑣𝜏(𝑘) belongs to

[max{𝑣
𝜏(𝑘), 𝑣𝜏(𝑘+1)},min{𝑣𝜏(𝑘), 𝑣𝜏(𝑘−1)}] = [max{𝑣

𝜏(𝑘),… , 𝑣
𝜏(𝑛)},min{𝑣𝜏(1),… , 𝑣𝜏(𝑘)}].

On the other hand, since 𝑣𝜏(1), 𝑣𝜏(2), . . . , 𝑣𝜏(𝑛) sum up to 1, we have that

𝑣𝜏(𝑘) = 1 −
𝑛∑

𝓁=1,𝓁≠𝑘
𝑣𝜏(𝓁) = 1 −

𝑘−1∑
𝓁=1

min{𝑣𝜏(1),… , 𝑣𝜏(𝓁)} −
𝑛∑

𝓁=𝑘+1
max{𝑣

𝜏(𝓁),… , 𝑣
𝜏(𝑛)},

whence Equation (11) indeed is satisfied. Moreover, Equation (12) is satisfied since, for every 𝓁 in {1, … , 𝑘 −1}, the parameter 𝑣𝜏(𝓁)
belongs to [𝑣

𝜏(𝓁), 𝑣𝜏(𝓁)] whence in particular min{𝑣𝜏(1), … , 𝑣𝜏(𝓁)} = 𝑣𝜏(𝓁) ≥ 𝑣𝜏(𝓁), and for every 𝓁 in {𝑘 +1, … , 𝑛}, the parameter 𝑣𝜏(𝓁)
belongs to [𝑣

𝜏(𝓁), 𝑣𝜏(𝓁)] whence in particular max{𝑣
𝜏(1), … , 𝑣

𝜏(𝓁)} = 𝑣𝜏(𝓁) ≤ 𝑣𝜏(𝓁). □

Proposition 2. Consider any coherent parametrisation Θ determined by a set of probability intervals [𝑣
𝑘
, 𝑣𝑘] for all 𝑘 in {1, … , 𝑛}, and any 

initial segment (𝜏(1), … , 𝜏(𝑚)) = (𝑘1, … , 𝑘𝑚) of length 𝑚 ∈ {1, … , 𝑛 − 1}. Then, there exists an E-admissible ranking with initial segment 
(𝑘1, … , 𝑘𝑚) if and only if the Equations (𝐴𝑗), (𝐵𝑗) and (𝐶𝑗) are fulfilled for every 𝑗 in {1, … , 𝑚}.

Proof 2 (of Proposition 2, recalled above). Note first that due to Equation (2), a ranking 𝜏 which admits (𝑘1, … , 𝑘𝑚) as initial sequence 
(i.e., such that (𝜏(1), … , 𝜏(𝑚)) = (𝑘1, … , 𝑘𝑚)) is E-admissible if and only if for some strength vector 𝑣 in Θ,

𝑣𝑘1 ≥ 𝑣𝑘2 ≥⋯ ≥ 𝑣𝑘𝑚 ≥max{𝑣𝑖 ∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝑚}}. (A.1)

1. For necessity, assume that there is an E-admissible ranking 𝜏 whose initial sequence is (𝑘1, … , 𝑘𝑚). This implies, for any 𝓁 in 
{1, … , 𝑚}, that

𝑣𝑘1 ≥ 𝑣𝑘2 ≥⋯ ≥ 𝑣𝑘𝓁 ≥max{𝑣𝑖 ∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝑚}}

≥max{𝑣𝑖 ∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝓁}}. (A.2)

We will prove that then the Equations (𝐴𝑗), (𝐵𝑗) and (𝐶𝑗) are fulfilled for every 𝑗 in {1, … , 𝑚}. To this end, consider any 
such 𝑗. Use Equation (A.2) with 𝓁 = 𝑗 to infer that indeed Equation (𝐵𝑗) is fulfilled. Equation (A.2) implies also that 𝑣𝑘𝓁 =
min{𝑣𝑘1 , … , 𝑣𝑘𝓁 } for every 𝓁 in {1, … , 𝑗}, and 𝑣𝑖 = min{𝑣𝑘1 , … , 𝑣𝑘𝑗 , 𝑣𝑖} for all 𝑖 in {1, … , 𝑛} ⧵ {𝑘1, … , 𝑘𝑗}. Use the fact that 𝑣

sums to 1 to infer that

𝑗∑
𝓁=1

min{𝑣𝑘1 ,… , 𝑣𝑘𝓁 } +
𝑛∑
𝑖=1

𝑖∉{𝑘1 ,…,𝑘𝑗}

min{𝑣𝑘1 ,… , 𝑣𝑘𝑗 , 𝑣𝑖} = 1,

and hence we infer immediately that indeed Equation (𝐴𝑗) is fulfilled. Finally, to show that also Equation (𝐶𝑗) is fulfilled, infer 
from Equation (A.2) that

𝑣𝑘𝓁 ≥max{𝑣
𝑖
∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝓁}}
18

for every 𝓁 in {1, … , 𝑗}. Use again the fact that 𝑣 sums to 1 to infer that indeed Equation (𝐶𝑗) is fulfilled.
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2. For sufficiency, let us define two vectors 𝑢 and 𝑤 that satisfy the condition in Equation (A.1), as we will see below. Let

𝑢𝑘𝑗 ∶= min{𝑣𝑘1 ,… , 𝑣𝑘𝑗 } and 𝑤𝑘𝑗 ∶= max{𝑣
𝑖
∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝑗−1}}

for all 𝑗 in {1, … , 𝑚}, and

𝑢𝑖 ∶= min{𝑣𝑘1 ,… , 𝑣𝑘𝑚 , 𝑣𝑖} and 𝑤𝑖 ∶= 𝑣𝑖
for all 𝑖 in {1, … , 𝑛} ⧵ {𝑘1, … , 𝑘𝑚}. Then by definition

𝑢𝑘1 ≥ 𝑢𝑘2 ≥⋯ ≥ 𝑢𝑘𝑚 ≥max{𝑢𝑖 ∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝑚}} (A.3)

and

𝑤𝑘1 ≥𝑤𝑘2 ≥⋯ ≥𝑤𝑘𝑚 ≥max{𝑤𝑖 ∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝑚}}, (A.4)

so we see that both vectors 𝑢 and 𝑤 respect the order described in Equation (A.1). These vectors are however not guaranteed to 
be strength vectors: they do not necessarily sum to 1, and hence, do not necessarily belong to Θ. They nevertheless exhibit useful 
properties: we will show (i) that 𝑢 is an upper probability, and 𝑤 a lower probability—which means that the former sums to a 
value that is at least 1, and the latter to a value that is at most 1; and (ii) that 𝑢𝑖 and 𝑤𝑖 belong to [𝑣

𝑖
, 𝑣𝑖] for all 𝑖 in {1, … , 𝑛}. 

By taking a suitable convex combination of them, we eventually show that we will end up with a coherent strength vector 𝑣 that 
belongs to Θ, and that satisfies the inequalities in Equation (A.1).

i To show that 𝑢 and 𝑤 are an upper and a lower probability, respectively, use Equation (𝐴𝑗) with 𝑗 = 𝑚 to infer that ∑𝑛
𝑖=1 𝑢𝑖 ≥ 1, and use Equation (𝐶𝑗) with 𝑗 =𝑚 to infer that 

∑𝑛
𝑖=1𝑤𝑖 ≤ 1.

ii We show that 𝑢𝑖 and 𝑤𝑖 belong to [𝑣
𝑖
, 𝑣𝑖] for every 𝑖 in {1, … , 𝑛} by proving that 𝑣

𝑖
≤𝑤𝑖 ≤ 𝑢𝑖 ≤ 𝑣𝑖 for every 𝑖 in {1, … , 𝑛}, 

which implies the former. By their definitions, we immediately have that 𝑣
𝑖
≤ 𝑤𝑖 and 𝑢𝑖 ≤ 𝑣𝑖 for every 𝑖 in {1, … , 𝑛}, so it 

remains to show that 𝑤𝑖 ≤ 𝑢𝑖 for every 𝑖 in {1, … , 𝑛}. To this end, consider first any 𝑗 in {1, … , 𝑚}. Infer from Equations (𝐵1)
and (A.4) that

𝑣𝑘1 ≥max{𝑣
𝑖
∶ 𝑖 ∈ {1,… , 𝑛}} ≥𝑤𝑘1 ≥𝑤𝑘2 ≥⋯ ≥𝑤𝑘𝑚 .

Similarly, infer from Equations (𝐵𝑗) with 𝑗 = 2 and (A.4) that

𝑣𝑘2 ≥max{𝑣
𝑖
∶ 𝑖 ∈ {1,… , 𝑛} ⧵ {𝑘1, 𝑘2}} ≥𝑤𝑘2 ≥𝑤𝑘3 ≥⋯ ≥𝑤𝑘𝑚 ,

which, together with similar applications of Equations (𝐵𝑗) for 𝑗 in {3, … , 𝑗} and (A.4), leads to the desired inequality

𝑢𝑘𝑗 =min{𝑣𝑘1 , 𝑣𝑘2 ,… , 𝑣𝑘𝑗 } ≥𝑤𝑘𝑗 .

Since the choice of 𝑗 in {1, … , 𝑚} was arbitrary, we have shown that 𝑤𝑘𝑗 ≤ 𝑢𝑘𝑗 for every 𝑗 in {1, … , 𝑚}. Consider now any 𝑖
in {1, … , 𝑛} ⧵ {𝑘1, … , 𝑘𝑚}. Use Equation (𝐵𝑗) to infer that, for every 𝑗 in {1, … , 𝑚},

𝑣𝑘𝑗 ≥max{𝑣𝓁 ∶ 𝓁 ∈ {1,… , 𝑛} ⧵ {𝑘1,… , 𝑘𝑗}} ≥ 𝑣𝑖,

whence

min{𝑣𝑘1 ,… , 𝑣𝑘𝑚} ≥ 𝑣𝑖.

Since also 𝑣𝑖 ≥ 𝑣𝑖, we infer that indeed

𝑢𝑖 =min{𝑣𝑘1 ,… , 𝑣𝑘𝑚 , 𝑣𝑖} ≥ 𝑣𝑖 =𝑤𝑖.

This shows that 𝑣
𝑖
≤𝑤𝑖 ≤ 𝑢𝑖 ≤ 𝑣𝑖 for every 𝑖 in {1, … , 𝑛}.

In order to use our vectors 𝑢 and 𝑤 for our goal, let 𝛼 ∶=
∑𝑛
𝑖=1 𝑢𝑖 and 𝛽 ∶=

∑𝑛
𝑖=1𝑤𝑖. We have already inferred above that 

𝛼 ≥ 1 and 𝛽 ≤ 1. If 𝛼 = 1 or 𝛽 = 1 we are done, because then 𝑢 or 𝑤 belong to Θ, so one of them is a strength vector for which 
we already know that it satisfies the order of Equation (A.1) which implies that there is an E-admissible ranking that starts with 
(𝑘1, … , 𝑘𝑚). Assume therefore that 𝛽 < 1 < 𝛼, so that 𝛼 − 𝛽 > 0, 𝛼−1

𝛼−𝛽 ∈ (0, 1), 1−𝛽
𝛼−𝛽 ∈ (0, 1) and 𝛼−1

𝛼−𝛽 + 1−𝛽
𝛼−𝛽 = 1. Let the vector 𝑣 be 

defined as

𝑣𝑖 ∶=
1 − 𝛽
𝛼 − 𝛽

𝑢𝑖 +
𝛼 − 1
𝛼 − 𝛽

𝑤𝑖 for all 𝑖 in {1,… , 𝑛},

so 𝑣 is a convex combination of 𝑢 and 𝑤, and it therefore too satisfies (the order described in) Equation (A.1), and 𝑣
𝑖
≤𝑤𝑖 ≤ 𝑣𝑖 ≤
19

𝑢𝑖 ≤ 𝑣𝑖 for every 𝑖 in {1, … , 𝑛}. Also,
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𝑛∑
𝑖=1
𝑣𝑖 =

1 − 𝛽
𝛼 − 𝛽

𝑛∑
𝑖=1
𝑢𝑖 +

𝛼 − 1
𝛼 − 𝛽

𝑛∑
𝑖=1
𝑤𝑖 =

1 − 𝛽
𝛼 − 𝛽

𝛼 + 𝛼 − 1
𝛼 − 𝛽

𝛽 = 𝛼 − 𝛽
𝛼 − 𝛽

= 1,

so 𝑣 belongs to Θ. This means that 𝑣 is a strength vector of our model that satisfies the desired ordering from Equation (A.1), 
which implies that there is indeed an E-admissible ranking that starts with (𝑘1, … , 𝑘𝑚). □

Appendix B. Additional experimental results

In this appendix, we introduce the experimental results on the different datasets that we didn’t show in Subsection 4.3, as the 
results are pretty similar between each dataset. This appendix is divided in two subsections: in a first subsection, we compare our 
approach based on the contour likelihood function with the state-of-the-art abstention approach when 60% of the labels are missing, 
or when 60% of the labels are swapped, as presented in Paragraph 4.3.1. In a second subsection, we compare both approaches 
when the amount of user data in the training set is reduced, as presented in Paragraph 4.3.2. To evaluate both approaches, we use 
correctness and completeness as presented in Paragraph 4.2.2.

B.1. Missing and swapped labels

In this subsection, we want to see how robust both methods are when the training dataset is perturbed either due to missing 
labels or swapped labels on the datasets we didn’t show before: Authorship, Bodyfat, Glass, Housing, Iris, Stock, Vehicle, Vowel, and 
Wine. For each dataset, we first provide a comparison of both methods when there are no perturbations on the dataset. Then, we 
provide on the left a comparison when 60% of labels are missing, and on the right a comparison when 60% of labels are swapped.

In general, both approaches have similar results, especially when labels are swapped. We provide for each dataset additional 
comments if needed.

Authorship. We notice on Figs. B.16 and B.17 that our likelihood-based approach provides a higher correctness than the classic 
abstention approach when the completeness is around 0.85. However, our approach has difficulties reaching very low completeness 
values, even with 𝛽 values close to 0 (Fig. B.18).

Bodyfat. Both methods perform very similarly on this dataset, and we have no difficulties obtaining different completeness values. 
Perturbing the dataset does indeed diminish the correctness for a given completeness value (Figs. B.19–B.21).

Fig. B.16. Comparison of methods on Authorship with no perturbations.
20

Fig. B.17. Comparison on Authorship with a missingness of 60%.
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Fig. B.18. Comparison on Authorship with 60% of swapped label pairs.

Fig. B.19. Comparison of methods on Bodyfat with no perturbations.

Fig. B.20. Comparison on Bodyfat with a missingness of 60%.
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Fig. B.21. Comparison on Bodyfat with 60% of swapped label pairs.
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Fig. B.22. Comparison of methods on Glass with no perturbations.

Fig. B.23. Comparison on Glass with a missingness of 60%.

Fig. B.24. Comparison on Glass with 60% of swapped label pairs.

Glass. Similarly to Authorship, as we can see on Fig. B.23, our likelihood-based approach provides a higher correctness than the 
classic abstention approach, but this time for low completeness values, while having difficulties to reach the lowest correctness values 
(Figs. B.22 and B.24).

Housing. Similarly to Bodyfat, both approaches are similar, but this time we are unable to reach a completeness of less than 0.4 
(Figs. B.25–B.27).

Iris. We have the same type of behaviour as Authorship and Glass, with a higher correctness for some values of the completeness 
with our approach, as seen on Fig. B.28, and a difficulty to reach low completeness values, as seen on Fig. B.29. Let us note that, 
despite having a very high correctness on the standard dataset and the dataset with missing labels, the increase of the correctness is 
very different when the labels are swapped, as seen on Fig. B.30, and is actually very similar to the increase of the correctness on the 
other datasets when labels are swapped.

Stock. Similarly to Bodyfat or Housing, both approaches are similar, but reaching low values of completeness is even more difficult 
22

(Figs. B.31–B.33).
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Fig. B.25. Comparison of methods on Housing with no perturbations.

Fig. B.26. Comparison on Housing with a missingness of 60%.

Fig. B.27. Comparison on Housing with 60% of swapped label pairs.
23

Fig. B.28. Comparison of methods on Iris with no perturbations.
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Fig. B.29. Comparison on Iris with a missingness of 60%.

Fig. B.30. Comparison on Iris with 60% of swapped label pairs.

Fig. B.31. Comparison of methods on Stock with no perturbations.
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Fig. B.32. Comparison on Stock with a missingness of 60%.



Fuzzy Sets and Systems 482 (2024) 108908L. Adam, A. Van Camp, S. Destercke et al.

Fig. B.33. Comparison on Stock with 60% of swapped label pairs.

Fig. B.34. Comparison of methods on Vehicle with no perturbations.

Fig. B.35. Comparison on Vehicle with a missingness of 60%.

Vehicle. Similarly to Bodyfat, Housing or Stock, both approaches are similar, with a difficulty to reach low values of completeness 
(Figs. B.34–B.36).

Vowel. This dataset is different from the others, as our method this time actually gives a slightly lower correctness than the classic 
abstention approach for given completeness values, like Wisconsin dataset on Figs. 8 and 10. This is especially visible on Figs. B.38
and B.39. This might be because both Vowel and Wisconsin datasets have the most labels to rank (11 and 16 respectively), and we 
may reach the curse of dimensionality, as we need to sample weights 𝑣 on a 10 and 15 dimensional space respectively (Fig. B.37).

Wine. We have the same type of behaviour as Authorship, Glass and Iris, with a higher correctness for some values of the complete-
ness with our approach, as seen on Fig. B.41, and a difficulty to reach low completeness values, as seen on the same figure. This 
is one of the easiest datasets to predict on (with Iris), and we reach very high correctness values very easily, even with very high 
completeness values (meaning we have full rankings). Nevertheless, we have the same behaviour for swapped levels as Iris, as the 
25

increase of the correctness is very different (Figs. B.40 and B.42).
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Fig. B.36. Comparison on Vehicle with 60% of swapped label pairs.

Fig. B.37. Comparison of methods on Vowel with no perturbations.

Fig. B.38. Comparison on Vowel with a missingness of 60%.
26

Fig. B.39. Comparison on Vowel with 60% of swapped label pairs.
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Fig. B.40. Comparison of methods on Wine with no perturbations.

Fig. B.41. Comparison on Wine with a missingness of 60%.

Fig. B.42. Comparison on Wine with 60% of swapped label pairs.

B.2. Change in the amount of data available

In the subsection, we want to see how both methods behave when the training dataset is reduced, on the 8 datasets we didn’t show 
before: Authorship, Bodyfat, Glass, Housing, Stock, Vowel, Wine and Wisconsin. For each dataset, we compare the completeness and 
the correctness between both methods.

Compared to the previous subsection, we will not provide individual comments for each dataset, as the results are very similar: 
the completeness of the predictions with our likelihood-based approach decreases as the training set diminishes in size, while the 
completeness of the predictions with the classic abstention approach does not change, or increases after a certain point. On the 
correctness, it is always higher for our approach, but the difference between both approaches is not always significative on some 
27

datasets (Figs. B.43–B.58).
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Fig. B.43. Completeness for Authorship.

Fig. B.44. Correctness for Authorship.

Fig. B.45. Completeness for Bodyfat.
28

Fig. B.46. Correctness for Bodyfat.
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Fig. B.47. Completeness for Glass.

Fig. B.48. Correctness for Glass.

Fig. B.49. Completeness for Housing.
29

Fig. B.50. Correctness for Housing.
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Fig. B.51. Completeness for Stock.

Fig. B.52. Correctness for Stock.

Fig. B.53. Completeness for Vowel.
30

Fig. B.54. Correctness for Vowel.
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Fig. B.55. Completeness for Wine.

Fig. B.56. Correctness for Wine.

Fig. B.57. Completeness for Wisconsin.
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Fig. B.58. Correctness for Wisconsin.



Fuzzy Sets and Systems 482 (2024) 108908L. Adam, A. Van Camp, S. Destercke et al.

References

[1] L. Adam, A. Van Camp, S. Destercke, B. Quost, Inferring from an imprecise Plackett–Luce model: application to label ranking, in: International Conference on 
Scalable Uncertainty Management, Springer, 2020, pp. 98–112.

[2] T. Augustin, F.P.A. Coolen, G. d Cooman, M.C.M. Troffaes, Introduction to Imprecise Probabilities, John Wiley & Sons, 2014.
[3] H. Azari, D. Parks, L. Xia, Random utility theory for social choice, in: Advances in Neural Information Processing Systems, 2012, pp. 126–134.
[4] G. Baltas, P. Doyle, Random utility models in marketing research: a survey, J. Bus. Res. 51 (2) (2001) 115–125.
[5] M. Cattaneo, Statistical Decisions Based Directly on the Likelihood Function, PhD thesis, ETH Zurich, 2007.
[6] Y.Y. Chen, Statistical inference based on the possibility and belief measures, Trans. Am. Math. Soc. 347 (5) (1995) 1855–1863.
[7] W. Cheng, K. Dembczynski, E. Hüllermeier, Label ranking methods based on the Plackett-Luce model, in: Proceedings of the 27th Annual International Conference 

on Machine Learning - ICML, 2010.
[8] W. Cheng, E. Hüllermeier, K.J. Dembczynski, Label ranking methods based on the Plackett-Luce model, in: Proceedings of the 27th International Conference on 

Machine Learning (ICML-10), 2010, pp. 215–222.
[9] W. Cheng, E. Hüllermeier, W. Waegeman, V. Welker, Label ranking with partial abstention based on thresholded probabilistic models, in: Advances in Neural 

Information Processing Systems 25 (NIPS-12), 2012, pp. 2510–2518.
[10] W. Cheng, M. Rademaker, B. De Baets, E. Hüllermeier, Predicting partial orders: ranking with abstention, Mach. Learn. Knowl. Discov. Databases (2010) 

215–230.
[11] J. De Bock, C.P. De Campos, A. Antonucci, Global sensitivity analysis for map inference in graphical models, Adv. Neural Inf. Process. Syst. 27 (2014).
[12] L. de Campos, J. Huete, S. Moral, Probability intervals: a tool for uncertain reasoning. I, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2 (1994) 167–196.
[13] S. Destercke, A pairwise label ranking method with imprecise scores and partial predictions, in: H. Blockeel, K. Kersting, S. Nijssen, F. Železný (Eds.), Machine 

Learning and Knowledge Discovery in Databases, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 112–127.
[14] J. Fürnkranz, E. Hüllermeier (Eds.), Preference Learning, Springer Berlin Heidelberg, 2011.
[15] J. Gu, G. Yin, Fast algorithm for generalized multinomial models with ranking data, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of the 36th 

International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 97, Long Beach, California, USA, 09–15 Jun 2019, PMLR, 
2019, pp. 2445–2453.

[16] J. Guiver, E. Snelson, Bayesian inference for Plackett-Luce ranking models, in: Proceedings of the 26th Annual International Conference on Machine Learning, 
ACM, 2009, pp. 377–384.

[17] E. Hüllermeier, J. Furnkranz, W. Cheng, K. Brinker, Label ranking by learning pairwise preferences, Artif. Intell. 172 (2008) 1897–1916.
[18] D.R. Hunter, et al., Mm algorithms for generalized bradley-terry models, Ann. Stat. 32 (1) (2004) 384–406.
[19] T. Krak, J. De Bock, A. Siebes, Imprecise continuous-time Markov chains, Int. J. Approx. Reason. 88 (2017) 452–528.
[20] I. Levi, The Enterprise of Knowledge, MIT Press, London, 1980.
[21] A. Liu, Z. Zhao, C. Liao, P. Lu, L. Xia, Learning Plackett-Luce mixtures from partial preferences, Proceedings of the AAAI Conference on Artificial Intelligence 

33 (01) (Jul. 2019) 4328–4335.
[22] R.D. Luce, Individual Choice Behavior: A Theoretical Analysis, Wiley, New York, NY, USA, 1959.
[23] J. Marden, Analyzing and Modeling Rank Data, vol. 64, Chapman & Hall/CRC, 1996.
[24] L. Maystre, M. Grossglauser, Fast and accurate inference of Plackett–Luce models, in: Advances in Neural Information Processing Systems, 2015, pp. 172–180.
[25] S. Moral, L.M. De Campos, Updating uncertain information, in: International Conference on Information Processing and Management of Uncertainty in 

Knowledge-Based Systems, Springer, 1990, pp. 58–67.
[26] R.L. Plackett, The analysis of permutations, J. R. Stat. Soc., Ser. C, Appl. Stat. 24 (2) (1975) 193–202.
[27] L. Thurstone, A law of comparative judgment, Psychol. Rev. 34 (1927) 273–286.
[28] M. Troffaes, Generalising the conjunction rule for aggregating conflicting expert opinions. I, J. Intell. Syst. 21 (3) (March 2006) 361–380.
[29] M. Troffaes, Decision making under uncertainty using imprecise probabilities, Int. J. Approx. Reason. 45 (2007) 17–29.
[30] M. Volkovs, G. Yu, T. Poutanen, Dropoutnet: addressing cold start in recommender systems, Adv. Neural Inf. Process. Syst. (2017) 30.
[31] P. Walley, Belief function representations of statistical evidence, Ann. Stat. 15 (4) (1987) 1439–1465.
[32] P. Walley, Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, New York, 1991.
[33] J.I. Yellott Jr., The relationship between Luce’s choice axiom, Thurstone’s theory of comparative judgment, and the double exponential distribution, J. Math. 
32

Psychol. 15 (2) (1977) 109–144.

http://refhub.elsevier.com/S0165-0114(24)00054-X/bib695BBC8175A66C336694FD223A2246ECs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib695BBC8175A66C336694FD223A2246ECs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibE9F4325862035098687C22629E00062Fs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib08CC96026515E305F46C63BC63545F29s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibE10A5E565C09655C9F66C6A6CFA51593s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib719C0FB12545CB4A9D2B685FF140FD66s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib7FF0386CF2D4FAF79E2B604EFC2139B9s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibA123F6D5D7FDF6013605785F2E507AA3s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibA123F6D5D7FDF6013605785F2E507AA3s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib1453C4710CEDC9489328DF53FB3D6153s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib1453C4710CEDC9489328DF53FB3D6153s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib16165DC06D7B96B673AA355BF85AD742s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib16165DC06D7B96B673AA355BF85AD742s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib7AA994CEF4EEA00C301D083F38D7D287s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib7AA994CEF4EEA00C301D083F38D7D287s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib7CB6B86834C20BF112BD40BD49F971E5s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib7889ECEAAC2274DADB04511C20B66A95s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib4F67F13764C1C2B7EAF931B2C638EC4Cs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib4F67F13764C1C2B7EAF931B2C638EC4Cs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibCBFE594751ACF01BF132A0F8ECD98B5Bs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibC0203EDA1F61B574185128C6D9FE1324s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibC0203EDA1F61B574185128C6D9FE1324s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibC0203EDA1F61B574185128C6D9FE1324s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibC5131BEF33EC4B597D4F0F48E1B4684Cs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibC5131BEF33EC4B597D4F0F48E1B4684Cs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib9429969DA88241401BAE4A4C9DA58932s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib80C4DDF6900F5A5C0B48B8BA2EF82947s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibF83BF1916868318FE926A7EE3804C048s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibDDC1B7989CC873823AE38E822E4A5054s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib2D43D96CF5FFF438490465304C676340s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib2D43D96CF5FFF438490465304C676340s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib8E14FDDA0285A7D8E0A1B78C503C61FFs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibEDF789AF9A734642BCD347DA0AC94861s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib7BE4C0F8D18F0F4B5B90A5E08AD7974Es1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibE75A7A563BFDB489944D79435B406A90s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibE75A7A563BFDB489944D79435B406A90s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib6CBD5217F063E51324C7E357779FC329s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibA498BFCFB6208193FBB314EC0D5E1462s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib565783F18F29F81F7BB9A877E9C05843s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib99A86A37925026E93D287A3DC8EA3237s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibFB1288DF882173877EA330690ECD7A86s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib85E90F96E2D8A6A66BD02DD0FFD0B6F8s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bibDB9FE1F87735D593A2CC0BB8D9DF6C32s1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib0545D9FC802C9DFAFED1358760573CACs1
http://refhub.elsevier.com/S0165-0114(24)00054-X/bib0545D9FC802C9DFAFED1358760573CACs1

	Inferring from an imprecise Plackett--Luce model: Application to label ranking
	1 Introduction
	2 The imprecise Plackett--Luce model
	2.1 The imprecise Plackett--Luce model

	3 Inference with IPL
	3.1 Outer approximation in the general case
	3.2 Interval-valued case
	3.2.1 Checking E-admissibility
	3.2.2 Computing and enumerating all E-admissible rankings
	Ruling out multiple rankings at once.
	Algorithm.



	4 Application to label ranking
	4.1 Estimation method
	4.1.1 Maximum likelihood estimation
	4.1.2 Set estimation via the contour likelihood
	4.1.3 Imprecise predictions

	4.2 Experimental setting
	4.2.1 Likelihood approximation
	4.2.2 Evaluation
	4.2.3 Thresholding

	4.3 Experimental results
	4.3.1 Comparison
	4.3.2 Influence of the amount of data


	5 Conclusions and perspectives
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Proofs
	Appendix B Additional experimental results
	B.1 Missing and swapped labels
	B.2 Change in the amount of data available

	References


